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ABSTRACT. We establish higher-order weighted Sobolev and Hoélder regularity for solutions to
variational equations defined by the elliptic Heston operator, a linear second-order degenerate-
elliptic operator arising in mathematical finance [I9]. Furthermore, given C*°-smooth data, we
prove C*°-regularity of solutions up to the portion of the boundary where the operator is degen-
erate. In mathematical finance, solutions to obstacle problems for the elliptic Heston operator
correspond to value functions for perpetual American-style options on the underlying asset.
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1. INTRODUCTION

Suppose ¢ € H is a domain (possibly unbounded) in the open upper half-space H := R¥! xR
(where d > 2 and Ry := (0,00)), and 010 := 00 N H is the portion of the boundary 00 of &
which lies in H, and 9y is the interior of 9H N 0&, where OH = R~ x {0} is the boundary of
H:= R xRy and R, := [0,00). We allow 9@ to be non-empty and consider a second-order,
linear elliptic differential operator, A, on & which is degenerate along 0y@. In this article, when
d = 2 and the operator A is given by , we prove higher-order regularity up to the boundary
portion, 9y — as measured by certain weighted Sobolev spaces, s#*T2(&, 1) (Definition ,
and weighted Hélder spaces, CF 212 G) (Definition [2.15) — for suitably defined weak solutions,
u € H' (O, w) (see for its definition), to the elliptic boundary value problem,

Au=f (a.e.) on O, (1.1)
u=g¢g ond0, (1.2)

where f : ¢ — R is a source function and the function g : 910 — R prescribes a Dirichlet
boundary condition. We denote € := & U Jy0 throughout our article. Furthermore, when
f € C™(0), we will also show that u € C*°(&) (see Corollary [1.7)). Since A becomes degenerate
along 0p0, such regularity results do not follow from the standard theory for strictly elliptic
differential operators [18, [22].

Because kf > 0 (see Assumption below), no boundary condition is prescribed for the
equation along 0p@0. Indeed, we recall from [3] that the problem , is well-posed,
given f € L*(0,w) and g € H'(0, ) obeying mild pointwise growth conditions, when we seek
weak solutions in H'(&, ) or strong solutions in H?(&,w). The elliptic Heston operator is
defined by

Av = —% (Vaz + 2000y + 0vyy) — (co —q— %) vy — k(0 —y)vy + cov, ve CP(H), (1.3)
and —A is the generator of the two-dimensional Heston stochastic volatility process with killing
[19], a degenerate diffusion process well known in mathematical finance and a paradigm for a
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broad class of degenerate Markov processes, driven by d-dimensional Brownian motion, and cor-
responding generators which are degenerate-elliptic integro-differential operators. The coefficients
of A are required to satisfy the

Assumption 1.1 (Ellipticity condition for the coefficients of the Heston operator). The coeffi-
cients defining A in ((1.3)) are constants obeying

c#0, —-1<p<l1, (1.4)
andﬁ>0,0>0,0020,andﬂq6R.

In [12], we proved that a weak solution, u € H'(&,w), to , is Holder continuous up
to 0 in the sense that u € C¢),.(0) (Definition , while in [3], we proved that u € H?(0, ),
for suitable f and ¢ in both cases. In we state the main results of our article and set them
in context in §I.2] where we provide a survey of previous related research by other authors. We
point out some of the mathematical difficulties and issues of broader interest in §1.3] The results
of this article may be generalized to a broader class of degenerate-elliptic operators and expected
extensions of our results to such a class are discussed in We provide a guide in §I.5| to the

remainder of this article. We refer the reader to §I.6] for our notational conventions.

1.1. Summary of main results. We summarize our main results concerning interior higher-
order Sobolev regularity in while our results on interior higher-order Holder regularity are
given in Here, our use of the term “interior” is in the sense intended by [4], for example,
U C 0 is an interior subdomain of a domain ¢ C H if U C € and by “interior regularity” of a
function v on &', we mean regularity of u up to dg& — see Figure [I.1

FIGURE 1.1. Boundaries and regions in the statement of Theorem

1Although ¢ has a financial interpretation as a dividend yield, which is non-negative, our analysis allows g € R.
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1.1.1. Higher-order interior Sobolev reqularity. We explain in how solutions, u € H' (0, w),
to a variational equation defined by the operator, A, may be interpreted as weak solutions
to , where the Sobolev space, H(€, ), is defined in . See Definitions and for
the descriptions of the weighted Sobolev spaces, J#**2(&, 1) and W"P (0, 1), respectively.

Theorem 1.2 (Interior s#**2 regularity on half-balls). Let Ry > R be positive constants and
let k > 0 be an integer. Then there is a positive constant, C = C(A,k, R, Ry), such that the
following holds. Let ¢ € H be a domain and let zg € g0 be such that

HﬂBRO(Z()) C 0.

Suppose that f € L*(0, ) and that w € H' (0, w) is a solution to the variational equation ([2.11)).
If f e Wk’Q(BEO(zo),m), then

u e A (B (20), w),
and u solves (L.1)) on B} (z) and

lullesszqagonm < © (Ihweaqos, conm * ilzig, carm ) (15)
We also have the following analogues of [I8, Theorem 8.10].

Theorem 1.3 (Interior s#**2 regularity on domains). Let k > 0 be an integer and let € C H be
a domain. Suppose that f € L*(0,w) and u € H'(0,w) is a solution to the variational equation

BII). If f € Wil (€. w), then
uwe A0, w),

loc
and u solves (1.1)). Moreover, for positive constants di < A and each pair of subdomains, ' C
0" C O with 0" € 0" and dist(0,0",0,0") > dy and height(0") < A, there is a positive
constant, C = C(A,dy,k,\), such that u obeys

lulloprsaormy < C (1 lwaom ) + el z2(omm)) - (1.6)

Remark 1.4 (Regularity up to the “non-degenerate boundary”). Of course, regarding the conclu-
sion of Theorem [I.3] standard elliptic regularity results for linear, second-order, strictly elliptic op-
erators [I8, Theorem 8.13] also imply, when k£ > 0, that u € I/[/'l};j2’2(ﬁual O)if f e Wk’Q(ﬁual 0),

loc

and g € mﬁfﬂ(ﬁ U010)N HYO,w), and 0,0 is C*2, and u — g € H}(O,w). However, our
focus in this article is on regularity of u up to the “degenerate boundary”, 0y&’, so we shall omit

further mention of this or other similarly straightforward generalizations.
Finally, we have an analogue of [I8, Theorem 8.9].

Theorem 1.5 (Existence and uniqueness of solutions with interior J#*+2 regularity). Let k >
0 be an integer and let ¢ S H. Suppose thaﬂ f e L>®0)n Wk’2(ﬁ,m), and (1 4+ y)g €

loc
W2(0), and the constant, co, in (1.3) obeys co > 0. Then there exists a unique solution
u € HY(O,w) N %fﬁ(ﬁ,m) to the wvariational equation (2.11) with boundary condition u —
g € HY(O,w). Moreover, u solves (L.1)) and, for positive constants di < A and each pair of
subdomains, ' C 0" C O with 0' € 0" and dist(0,0",0,0") > dy and height(0") < A, there

is a positive constant, C = C(A,dy, k,N), such that the estimate ((1.6) holds.

2The hypotheses on f and g are relaxed in [3} [T1] to allow for unbounded f and g with suitable growth properties.
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1.1.2. Higher-order interior Holder regularity. See Definitions and for descriptions of
the Daskalopoulos-Hamilton family of CH* Hélder norms. We have the following analogue of
Theorem [1.2

Theorem 1.6 (Interior Che regularity for a solution to the variational equation). Let k > 0 be
an integer, let p > max{4,2 + k + 8}, and let Ry be a positive constant. Then there are positive
constants R1 = Ry1(k, Ry) < Ry, and C = C(A,k,p,Ry), and o = (A, k,p, Ry) € (0,1) such that
the following holds. Let © C H be a domain. If f € L?>(0,w), and u € H'(O,w) is a solution to
the variational equation , and zg € OyO is such that

H N Bgr,(20) C O,
and f € W%’p(BEO(ZO),yﬁ*l), then
u € CP*(Bf (20)),

and u solves (|L.1)) on BEl(zo). Moreover, u obeys

Il g, o < € (M lhaeagag copai + o, i) - (L.7)

Given Theorem [1.6] one easily obtains — but via purely Sobolev space and Moser itera-
tion methods — the following degenerate-elliptic analogue of the C°°-regularity result for the
degenerate-parabolic model for the linearization of the porous medium equation [4, Theorem
I.1.1].

Corollary 1.7 (Interior C*®-regularity). Let ¢ € H be a domain. If f € L*(0,w) and u €
H(0,w) is a solution to the variational equation (2.11)), and f € C>®(0), then u € C*(0) and
u solves (|1.1)).

We also have an analogue of Theorem [1.3|and of [I8, Theorem 6.17].

Theorem 1.8 (Interior ohe regularity on domains). Let k > 0 be an integer and let p >
max{4,3 + k + B}. Then there is a positive constant o = (A, k,p) € (0,1) such that the
following holds. Let ¢ € H be a domain. If f € L*(0,w) and u € H'(O,w) is a solution to the

variational equation (2.11)), and f € W2k+2’p(@,m), then

loc
ue Ch(0).
Moreover, u solves (1.1)) and, for positive constants dy < A and each pair of subdomains, ' C
0" C 0 with 0' € 0" and dist(0,0",0,0") > dy andH 0" C (—A,A) x (0,A), there is a positive
constant, C = C(A,dy, k,p,A), such that

lullgrnry < C (IFlwasszaormy + Nullz2(on ) - (18)

Corollary 1.9 (Interior a priori C%® estimate on domains of finite height). If in addition to the
hypotheses of Theorem |1.8, the hypothesis on f is strengthened to f € W2+2P(¢ y5~1), then
for positive constants di < A and each pair of subdomains, 0' C 0" C O with 0' € 0" and
dist(010”,0,0") > dy and height(0") < A, there is a positive constant, C = C(A,dy,k,p, ),
such that

lullgen gy < € (I lworrnniom yo-ry + lll zagom o1y ) - (1.9)

3While the equation (T.1)) is translation-invariant in the z-direction, the estimate (T.8)) is not when v # 0 in the
definition (2.5)) of the weight, tv.
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Remark 1.10 (Regularity up to the “non-degenerate boundary”). Regarding the conclusion of
Theorem [I.8] standard elliptic regularity results for linear, second-order, strictly elliptic operators
[18, Theorems 6.19 & 9.19] also imply, when & > 0, that u € WlijQ’p(@’) (Ck+22(0)) if f €
VVIIZCp(ﬁ) (respectively, C*(¢)), while if f € W]]Zf(ﬁu 010), and g € Wl’j;jz”’(ﬁu 010) N

HY(0,w), and 0,0 is Ck¥T11 (respectively, CF*2?) and u—g € H'(0,w), then u € I/VIIZ;LQ’p(ﬁU
010) (respectively, C**2%(¢ U0, 0)). As before, because our focus in this article is on regularity
of u up to the “degenerate boundary”, dy&, we shall omit further mention of such straightforward

generalizations.

Lastly, we give an analogue of the existence and interior Schauder a priori estimate results
[4, Theorems 1.1.1, 1.1.2, & 1.12.2] for the initial value problem for a degenerate-parabolic model
for the linearization of the porous medium equation on a half-space, and of [I8, Theorems 6.13
& 6.19], in the case of boundary value problems for strictly elliptic operators. We recall the
description of the weighted Holder space, okt (0), due to Daskalopoulos and Hamilton [4], in
Definition While the interior a priori estimate is stated in Theorem for bounded
subdomains, ¢ C H, for the sake of clarity, the estimate should easily extend to unbounded
domains using the family of Hélder spaces and Hélder norms defined in [13].

Theorem 1.11 (Existence and uniqueness of solutions with interior Cch2te regularity). Let
k > 0 be an integer and let K be a finite right-circular cone. Then there is a positive constant
a=a(Ak K) € (0,1) such that the following holds. Let ¢ € H be a domain obeying a uniform

exterior cone condition along O with cone K. If f € Cﬁkiﬁ’“(@ NC(0) and g € C(O) with
(14 y)g € C?(0), and the constant, co, in (1.3)) obeys co > 0, then there is a unique solution,

ue CPo)NC(OUd0)NL>®(0),

to the boundary value problem, (1.1), (1.2). Moreover, for positive constants di < A and each
pair of subdomains, ' C 0" C O with 0" € 0" and dist(0,0',0,0") > dy and diam(0") < A,
there is a positive constant, C = C(A,dy, k,p,\), such that

lullgrzsagzy < C (Hfuggm,a(@,) + uuuc(ﬁ,/)) . (1.10)

Remark 1.12 (Schauder a priori estimates and approach to existence of solutions). As we explain

in [14], the proof of existence of solutions, u € CE*T*(£)NC(6), to the boundary value problem,

(1.1), (1.2), given f € cF (@) and g € O(0), is considerably more difficult when 9;& is non-
empty because, unlike in [4], one must consider the impact of the “corner” points, dy& N 010, of

the subdomain, & C H, where the “non-degenerate boundary”, 910, intersects the “degenerate
boundary”, OH.

Remark 1.13 (Refinements of Theorem . Our existence result and Schauder a priori es-
timate in Theorem may appear far from optimal because of the strong hypothesis that
fe C'?HG’O‘(Q), the fact that the Holder exponent, a € (0, 1), is not arbitrary, and the presence
of the cone condition hypothesis. However, the regularity hypothesis for f in Theorem [1.11| may
be relaxed to f € c¥ (0), with a € (0,1) arbitrary, and the cone conditions on & removed,
using an interior Schauder a priori estimate which we develop by quite different methods in [14].

Remark 1.14 (Campanato spaces). In the context of non-degenerate elliptic equations, Cam-
panato spaces [32] provide a natural bridge between Sobolev spaces and Holder spaces and allow
one to prove Schauder a priori estimates and Holder regularity using Sobolev space methods.
It would be interesting to explore whether the conclusions of Theorems and and thus



HIGHER-ORDER REGULARITY FOR SOLUTIONS TO VARIATIONAL EQUATIONS 7

Theorem [L.11]in particular, could be sharpened with the aid of a suitable version of Campanato
spaces adapted to the weights appearing in our definitions of weighted Sobolev and Holder spaces.

Given an additional geometric hypothesis on & near points in dy& N 910, the property u €

CY0U0,0)N L>*(0) simplifies to u € CY, (O)NC(0O).

s,loc

Corollary 1.15 (Existence and uniqueness of globally continuous C§’2+O‘( 0) solutions). Suppose,
in addition to the hypotheses of Theorem [1.11], that the domain, O, satisfies a uniform exterior
and interior cone condition on Oy N 010 with cone K in the sense of Definition . Then the
solution, u, obeys

u € C§7Z+a(ﬁ) N Cgloc(ﬁ_)) N C(ﬁ)a
and, if O is bounded, then u € C¥*T*(0) N C*(0).

In a different direction, given additional hypotheses on f, we easily obtain

Corollary 1.16 (Interior a priori CH2T estimate on domains of finite height). If in addition

to the hypotheses of Theorem the hypothesis on f is strengthened to f € 03’“*6"“(5’) then,
for positive constants di < A and each pair of subdomains, 0' C 0" C O with 0' € 0" and
dist(010",0:0") > dy and height(0") < A, there is a positive constant, C = C(A,dy,k,p, ),
such that

[ p——e (||f||c§k+6,a(é,,) + ||u|yc(ﬁ—,,)) . (1.11)

1.2. Survey of previous related research. We provide a brief survey of some related research
by other authors on regularity theory for solutions to degenerate elliptic and parabolic partial
differential equations most closely related to the results described in our article. For a discussion
of previous research related to supremum bounds and Holder continuity near the boundary for
weak solutions to the Heston equation, we refer the reader to our article [12].

Naturally, the principal feature which distinguishes the equation , when the operator A
is given by , from the linear, second-order, strictly elliptic operators in [I§], is the fact that
A becomes degenerate when y = 0 and, because kf > 0 in , boundary conditions may be
omitted along y = 0.

The literature on degenerate elliptic and parabolic equations is vast, with the well-known
articles of Fabes, Kenig, and Serapioni [7, [§], Fichera [15], 16], Kohn and Nirenberg [21], Murthy
and Stampacchia [27, 28] and the monographs of Levendorskii [24] and Oleinik and Radkevi¢
[29, 30}, 3], being merely the tip of the iceberg. As far as the authors can tell, however, there
has been far less research on higher-order regularity of solutions up to the portion of the domain
boundary where the operator becomes degenerate. In this context, the work of Daskalopoulos
and her collaborators [4, 5] and of Koch stands out in recent years because of their introduction
of the cycloidal metric on the upper-half space, weighted Holder norms, and weighted Sobolev
norms which provide the key ingredients required to unlock the existence, uniqueness, and higher-
order regularity theory for solutions to the porous medium equation and the degenerate-parabolic
model equation on the upper half-space for the linearization of the porous medium equation.

Koch [20] develops a regularity theory for certain linear, degenerate elliptic and parabolic
partial differential operators in divergence form (with a degeneracy similar to that of )
which serve as models for the linearization of the porous medium equation. However, while
Koch uses Sobolev weights which are comparable to ours, his methods — which use Moser
iteration and pointwise estimates for fundamental solutions — are very different from those we
employ in [12], which use Moser iteration and the abstract John-Nirenberg inequality. Since our
approach avoids the use of potential theory and its pointwise estimates, we circumvent any need
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to consider pointwise estimates for the fundamental solution for the Heston operator which,
although tantalizingly explicit in its various forms [9] [10] [14] [19], appears quite intractable for
the analysis required to emulate the role of the fundamental solution for the Laplace operator
in the development of Schauder or L theory in [I§]. Moreover, the structure of the lower-order
terms in the linear operators is simpler in [20], whereas the new u, term present in causes
considerable difficulty. Finally, Koch does not consider the case where 00 = 9y& U 0,0, where
A is degenerate along 0p@ but non-degenerate along 0, 0.

1.3. Some mathematical highlights of this article. Our approach in §3|and §4|of our article
to the higher-order Sobolev regularity theory for weak solutions to equation , that is, solutions
to the variational equation , may appear to proceed by adapting a traditional strategy (such
as that of [I8, §8.3 & §8.4]), but the degeneracy of the operator, A, in makes this strategy
far more complicated than one might expect from [18].

As we explained in [3], it is surprisingly difficult to improve the L?(&, w)-estimate for y'/?Du
implicit in the a priori H'(&,w)-estimate for a solution to (2.11)) to an L?(&, to)-estimate for
the gradient, Du. For this purpose, we use a trick due to Koch [20, Lemma 4.6.1] which works
nicely when the domain, &, is the upper half-plane, H. However, while elementary methods
then yield an interior L?(&”,w)-estimate for Du on a subdomain ¢’ C ¢ S H with 6’ C €
and dist(010",0,0) > 0, it is unclear how to justify a global L?(&,w)-estimate for Du on a
subdomain & ;Cé H without a priori knowledge of the existence of smooth solutions, u € C*(0)
to the boundary value problem , . Therefore, we instead confine our attention in this
article to “interior” regularity of solutions to the variational equation , that is, regularity
of such solutions up to the “degenerate boundary”, 9y&, and defer a discussion of global a priori
estimates and regularity of solutions up to & to later work. While we adapt the finite-difference
methods of [I8] §8.3 & §8.4] in to prove HZ (&, w)-regularity of solutions to the variational
equation , finite-difference methods do not extend to give H?(&,w)-regularity of solutions,
u, on neighborhoods of the “corner points”, 9y@ N0y, where the degenerate and non-degenerate
boundary portions intersect. (As noted earlier, standard methods from [18] give HZ (60U, O, 10)-
regularity of solutions to the variational equation , that is, regularity of solutions up to the
non-degenerate boundary, 0,0'.)

While the essential idea in §4] underlying the development of higher-order Sobolev regularity,
%’jgjz(ﬁ, o) with & > 1, of a solution u € H'(&,w) to the variational equation is to take
derivatives of the equation and estimate k + 2 derivatives of u in terms of k derivatives of
f, such an approach is complicated by the presence of the degeneracy factor, y, multiplying the
second-order derivatives, Yz, YUzy, Ylyy, in . For example, differentiating once with
respect to y yields unweighted second-order derivative terms, .y, gy, Uyy, without the degeneracy
factor, y, and these are even harder to estimate, precisely because the operator, A, in is
degenerate elliptic. It is this feature which partly accounts for the complexity of our Definition
of the higher-order weighted Sobolev spaces, #%2(0, w).

Naturally, the same difficulty arises in when we consider higher-order Hélder regularity,
CE (@) with k > 1 and CP?T(6), of a solution u € H'(&,w). However, at this stage, the
difficulties have largely been overcome in 4] While it may be unorthodox to prove higher-order
Holder regularity, Schauder a priori estimates, and Schauder existence results parallel to those
of [I8, §6.1 & §6.3] using a variational approach, it is not without precedent as illustrated by
previous applications of Campanato spaces in the context of linear, second order, strictly elliptic
operators [32].
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As we explain in more detail in [14], it is a challenging problem to prove existence of solutions,
u — whether in C¥?T(0)NC(6) or CF*T*(6) — to the elliptic boundary value problem (L.1),
(1.2) entirely within a Schauder framework parallel to that of [4] (where boundary conditions
such as along the “fixed boundary” do not arise since 010 is empty in their application)
and this motivates the variational approach which we employ here. One reason for the difficulty
is due to complications which emerge when one attempts to apply the continuity method to prove
existence of solutions u € C§’2+a(5’) to , , say with ¢ = 0 on 0410, by analogy with the
method of proof of [I8, Theorem 6.8]. While the reflection principle (across the axis x = 0) does
not hold for the operator, A, in , it does hold for the simpler model operator,

Agv = —% (vm + JQUyy) — k(0 — y)vy + cov, v e C(H),

since the v, and v, terms are absent and so, provided f obeys f(—z,y) = —f(z,y) for (z,y) € H
(and thus f(0,-) = 0), one can solve

Apgupg=f on 0, u=0 on00,

for a solution, ug, when the domain, &, is the quadrant R, x R.

However, if u € C27%(0) solves (1.1, then, letting y — 0 in (L.1)), we find that
_(CO - Q)ux(ov 0) = f(070)a

since u,(0,0) = 0 (because u(0, ) = 0) and as u € C2T*(&0) implies lim, ) —(0,0) yD?u = 0 [4,[13].
Hence, when ¢y — ¢ = 0, we see that we can only solve (1.1), when f obeys the compatibility
condition f(0,0) = 0, whereas this compatibility condition for f is not present when ¢y — ¢ # 0.

Furthermore, we can only use the method of continuity to produce a solution u € ck ’2+O‘(ﬁ_’ )
when we already have a global a priori Schauder estimate analogous to that of [I8, Theorem
6.6] and developing such an estimate is a challenging problem, albeit one we address elsewhere.
Finally, the continuity method in the proof of [I8, Theorem 6.8] is justified because the first-order
derivative terms in linear, second-order, strictly elliptic operators with variable coefficients can
be treated as lower-order terms due to interpolation inequalities [I8, Lemma 6.35]. In the case
of the Heston operator (and operators with similar structure), the first-order derivative terms

cannot be treated as lower-order, as we can observe from the interpolation inequality [I3, Lemma
3.2 & Equation (3.8)].

1.4. Extensions. The Heston stochastic volatility process and its associated generator serve as
paradigms for degenerate Markov processes and their degenerate-elliptic generators which appear
widely in mathematical finance, so we briefly comment on two directions for extending our work
in this article.

1.4.1. Degenerate elliptic and parabolic operators in higher dimensions. Generalizations of the
Heston process to higher-dimensional, degenerate diffusion processes may be accommodated by
extending the framework developed in this article and we shall describe extensions in a sequel.
First, the two-dimensional Heston process has natural d-dimensional analogues [17] defined, for
example, by coupling non-degenerate (d — 1)-diffusion processes with degenerate one-dimensional
processes [2, 206, [34]. Elliptic differential operators arising in this way have time-independent,
affine coefficients but, as one can see from standard theory [I8] 22], 23| 25] and previous work of
Daskalopoulos and her collaborators [4, [5] on the porous medium equation, we would not expect
significant new difficulties to arise when extending the methods and results of this article to the
case of elliptic and parabolic operators in higher dimensions and variable coefficients, depending
on both spatial variables or time and possessing suitable regularity and growth properties.
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Specifically, as we explain further in Remark [2.8] we expect that all of the main results of
this article should extend to the case of a degenerate-elliptic operator on a subdomain & of a
half-space H = R4 x Ry,

Av = —xdaijvxixj — b, +ev, veC®(0), (1.12)

under the assumptions that the matrix (a%) is strictly elliptic, b > v > 0, for some constant
v > 0, and ¢ > 0 and the coefficients (a”/), (b%), and ¢ have suitable growth and regularity
properties. See [13] for an analysis with applications to probability theory based on a parabolic
version of this type of elliptic operator as well as [11] for weak maximum principles for a general
class of degenerate-elliptic operators.

1.4.2. Regularity near the fixed boundary and global a priori estimates. The important question
of higher-order regularity for solutions u to the elliptic boundary value problem , (1.2) —
for example, whether solutions belong to C§’2+O‘(@_’) when f belongs to Cf’a(ﬁ_) and g belongs
to C§’2+a(ﬁ_)) and € is bounded with 9y & of class C*+2 and C*2*+°_transverse to OH — is one
which we defer to a subsequent article.

1.5. Outline of the article. For the convenience of the reader, we provide a brief outline of
the article. In §2| we review local supremum estimates and local C§'(0)-regularity results for
solutions, u € H'(0,w), to the variational equation , and which we proved in [12]. In
43, we establish the H?(&,w)-regularity for solutions, u € H(&,w), concluding with Theorem
In we establish the #%+2(0, w)-regularity for solutions, v € H'(&,w), for all k > 0,
with proofs of Theorems and together with Theorem and Corollary Section
contains our proofs of C&*(&)-regularity of solutions, u € H(€,w), in the form of Theorems
and together with proofs of ck ’2+a(ﬁ )-regularity and a Schauder a priori estimate, as
part of Theorem and Corollary Appendix [A] collects some useful facts from our earlier
articles, together with proofs of a more technical nature.

1.6. Notation and conventions. In the definition and naming of function spaces, including
spaces of continuous functions, Holder spaces, or Sobolev spaces, we follow Adams [I] and alert
the reader to occasional differences in definitions between [I] and standard references such as
Gilbarg and Trudinger [I8] or Krylov [22], 23].

We let N := {0,1,2,3,...} denote the set of non-negative integers. For r > 0 and Py =
(w0,0) € R?, we let B.(Py) := {(z,y) € R? : (x — 20)? + (y — y0)? < r?} denote the open ball
with center Py and radius r and, given a domain & C R?, we denote B (Py) := 0 N B.(Py),
when the domain & is understood from the context.

If V. C U C R? are open subsets, we write V' € U when U is bounded with closure U ¢ V. By
supp ¢, for any ¢ € C(R?), we mean the closure in R? of the set of points where ¢ # 0.

We use C' = C(x,...,x*) to denote a constant which depends at most on the quantities appearing
on the parentheses. In a given context, a constant denoted by C' may have different values
depending on the same set of arguments and may increase from one inequality to the next. We
let C(A), C(A,x), and so on, denote constants which may depend on one or more of the constant
coefficients of the operator A (that is, co,q, k, 0, 0,0).

2. REVIEW OF SUPREMUM ESTIMATES AND HOLDER REGULARITY RESULTS

We describe the main results in [12] concerning boundedness and C& Hélder regularity of “weak

solutions” to (1.1)) (and (1.2)). In we review our definition of the variational equation ([2.11))

corresponding to ([1.2)), together with the required Sobolev spaces. In §2.2] we recall our local
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supremum estimates for solutions, u € H'(&,w), to the variational equation which we
proved in [12], while in we review our Holder continuity results for solutions, u € H'(&,w),
which we also proved in [12]. Finally, in §2.4] we give the definitions of higher-order weighted
Hoélder spaces due to Daskalopoulos and Hamilton [4].

2.1. Preliminaries. We review our definitions of weighted Sobolev spaces from [3, Definition
2.20]. For 1 < p < oo, let

LP(0,1) = {u € Lioo(0) : [l Lr(om) < o0}, (2.1)
HY(O,v0) == {ue W,(O): |lullm(om <}, (2.2)
where
[ty 2= | fuPo e (2.3)
[l = [ (DU + 1+ ) o ddy (24)
with weight function o : H — (0, 00) given byﬂ
w(z,y) =yl VI (g y) € (2.5)
where 0
2K 2K
/8 = ? and o= ﬁ’ (26)

and 0 < v < 79(A), where vy depends only on the constant coefficients of A in (|1.3). We denote
HY(0,w) = L*(0,w).

Remark 2.1 (Role of ). In [3] and [II], we require the constant, 7, in to be positive for
the purpose of proving existence and uniqueness, respectively, for solutions to (2.11) when & is
unbounded. However, while we shall continue to assume ~ > 0 in this article for consistency, this
constant plays no role in regularity arguments or when & is bounded and, for the latter purposes,
one could set v = 0.

We recall that [3, Definition 2.22]

1
a(u,v) = 5 /ﬁ (uzvr + 00UyV; + 00 ULVy + 02uyvy) y 1 dxdy
”/( + 00Uy) U eyt da d (2.7)
- = U OUy) V ———= x .
— / (a1y + b1)ugvw de dy + / couvwdrdy, Yu,v e H(O,w),
7 o

is the bilinear form associated with the Heston operator, A, in ((1.3)), where

1 0
al = % — — and b1 =Cy)—(q— Q (28)
o 2 o

We shall also avail of the

Assumption 2.2 (Condition on the coefficients of the Heston operator). The coefficients defining
A in ([1.3)) have the property that b; = 0 in (2.8).

“In [3], we used the equivalent factor, |z|, but we use v/1 + 22 here since the resulting weight is in C'°°(H).
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Assumption involves no loss of generality because, using a simple affine changes of variables
on R? which map (H, H) onto (H,OH) (see [3, Lemma 2.2]), we can arrange that by = 0. The
conditions (T.4]) ensure that y~'A is uniformly and strictly elliptic on H. Indeed,

56 20068+ 0°8) 2 wy(el +8). V(6.&) € R, (2:9)

where
1
vy 1= 5(1 — |o|) min{1, 0%}, (2.10)

and vy > 0 by Assumption [1.1

Given a subset T C 00, we let H} (0 UT, ) be the closureﬂ in HY(0,w) of C*(0UT). Given
a source function f € L?(&, ) and recalling that & = 0 Udy0, we call a function u € H'(0, 1)
a solution to the variational equation for the Heston operator if

a(u,v) = (f,0)2(o ), YV E H} (O, w). (2.11)

Given a subset T C 00 and g € H'(0,w), we say that u € H' (0, ) obeys u =g on T C 90 in
the sense of H' if

u—g e HNOUT w), (2.12)
where T¢ := 90 \ T. In our application, we shall only consider T C 9,0. If u € H*(0, ) (see
(3.9) for its definition) and g € H!(&, ), we recall from [3, Lemma 2.29] that u is a solution to

(1.1) (a.e. on @) and (1.2) (in the sense of H') if and only if u—g € H}(Z, ) and u is a solution
to the variational equation (2.11)).

2.2. Local supremum bounds near the degenerate boundary. We say that a domain,
U C H, obeys an exterior cone condition relative to H at a point zg € OU if there exists a finite,
right circular cone K = K,, C H with vertex zy such that UNK,, = {2} (compare [18, p. 203]).
A domain, U, obeys a uniform exterior cone condition relative to H on T C OU if U satisfies an
exterior cone condition relative to H at every point 29 € T" and the cones K, are all congruent
to some fixed finite cone, K (compare [I8, p. 205]).

Definition 2.3 (Interior and exterior cone conditions). Let K be a finite, right circular cone.
We say that & obeys interior and exterior cone conditions at zg € Og0 N 010 with cone K if
the domains ¢ and H \ & obey exterior cone conditions relative to H at zy with cones congruent
to K. We say that & obeys uniform interior and exterior cone conditions on OgC N 010 with
cone K if the domains ¢ and H \ & obey exterior cone conditions relative to H at each point
20 € 090 N 010 with cones congruent to K.

In the statement of the supremum estimates, we use the following

Definition 2.4 (Volume of sets). If S C H is a Borel measurable subset, we let |S|s denote the
volume of S with respect to the measure y® dz dy, and | S|, denote the volume of S with respect
to the measure v dx dy.

We recall from [12] the following analogues of [20, Proposition 4.5.1] and [18, Theorem 8.15];
we have reformulated the results here in terms of Euclidean balls in order to make them more
readily applicable in our present article (see Appendix for details).

5Note that Hg (0 UT,w) = Hi (O UT,w) = H{ (6 UT, ), since C(OUT) = C&(OUT) = C&(OUT), where
T and T denote the interior and closure, respectively, of T in 00.
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Theorem 2.5 (Supremum estimates near points in dp&). [12, Theorem 1.7 & Remark 1.10] Let
p > 24 [ and let Ry be a positive constant. Then there are positive constants, C = C(A,p, Rp)
and Ry = R1(Ry) < Ry, such that the following holds. Let ¢ S H be a domain. If u € H' (0, w)
satisfies the variational equation with source function f € L*(0,w), and zo € 9O is such
that

HN Bg,(20) C O,
and f obeys
f e LP(Bf (20),4°7), (2.13)
then u € LOO(BE(ZO)), and

lollm st con < € (1Mot corasy + o, o) - 214

Theorem 2.6 (Supremum estimates near points in 9p@& N 910). [12, Theorem 1.7] Let K be
a finite right circular cone, let p > 2+ 3, and let Ry > 0 be a positive constant. Then there
are positive constants, C = C(A, K,p, Ry) and Ry = Ri(K, Ry), such that the following holds.
Let O ; H be a domain. If u eil(ﬁ,m) satisfies the variational equation with source
function f € L?(0,w) and 2o € 0o0 N 010 is such that O obeys an interior cone condition at zo
with cone K, and

u=0 on 010 N Bgy(20) (in the sense of H!),
and f obeys (2.13)), then u € LOO(BEI(ZO)) and u satisfies (2.14]).

Remark 2.7 (Use of the weight ”~! versus tv in Theorems and . Notice that on the right-
hand-side of estimate (2.14)) we have Hf||Lp(BR0(ZO)7y5_1) instead of || f[|Lr (B, (z0)w)- This allows
us to conclude that the constant C' appearing in ([2.14]) is independent of the point zy € dy&. By
(2.5)), the weight w contains the factor e~V 14+2% " which means that the constant C will depend
on the 2-coordinate of the point zo € 0o, if we replace || fl|Lo(5y (z0).y5-1) PY |fllLr(Ba, (20)m)
on the right-hand-side of (2.14)).

Remark 2.8 (Supremum estimates and Holder regularity in higher dimensions). Theorems
2.10, [2.11} [2.12] and [2.13| are stated for the case d = 2. However, as we noted in [12], when
d > 2 and the operator A in is replaced by one of the form , then the conclusions
of these theorems (and hence their consequences in this article) remain valid, with virtually no
change in the proofs, expect for slight changes in the hypotheses. For example, when d > 2,
the hypothesis p > 2 + 8 in Theorems and is replaced by p > d + 8 and the constants
C and R; now additionally depend on d. Similarly, in Theorems [2.10} 2.11} 2.12 and .13} the
hypothesis p > max{4,2 + 3} is replaced by p > max{2d,d + 8} and the constants C, R, and «
now additionally depend on d.

2.3. Holder continuity up to the degenerate boundary for solutions to the variational
equation. We recall the definition of the Koch distance function, s(-,-), on H introduced by
Koch in [20, p. 11],
Z— 20 =
s(z, 20) = | | V2= (2,9),20 = (w0, y0) € H, (2.15)
VU +yo+ |z — 2

where |z — 20|? = (z — 20)%2 + (y — y0)?. The Koch distance function is equivalent to the cycloidal
distance function introduced by Daskalopoulos and Hamilton in [4, p. 901] for the study of the
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porous medium equation. For r > 0 and zg € @, we define the corresponding cycloidal balls and
their intersections with subdomains of H by

Br(z0) ={z € H:s(z,20) <7},
B (20) := 0N Br(2),
while %, (z0) = {z € H: 5(z,20) < r} and B, (20) = O NP, (z0) denote the closures these subsets

in ¢ and H, respectively.
Observe that

(2.16)

s(z,20) < |z — 20|"/?, Vz,z €H, (2.17)
and thus
HnN B, (Zo) C e@r(Z‘o), Vzo € H, r > 0. (2.18)

The reverse inequality and inclusion take their simplest form when yg = 0, in which case the
inequalities y < |z — zo| and

2 = 20| = s(z,20)Vy + |2 — 20| < 5(2,20) V2|2 — 20l
give
|z — 20| < 25(2,20)%, Vze€H, z € OH, (2.19)
and
PBr(z0) C HN Bg,2(20), Vzo € OH, r > 0. (2.20)

(Analogues of (2.19) and (2.20) when y > 0 are given in Appendix[A.3])
Following [I}, §1.26], for a domain U C H, we let C(U) denote the vector space of continuous

functions on U and let C(U) denote the Banach space of functions in C(U) which are bounded
and uniformly continuous on U, and thus have unique bounded, continuous extensions to U, with

norm

[ullo) = sup [ul
U

Noting that U may be unbounded, we let Co.(U) denote the linear subspace of functions u € C'(U)

such that u € C(V) for every precompact open subset V' &€ U. Daskalopoulos and Hamilton
provide the

Definition 2.9 (C¢ norm and Banach space). [4, p. 901] Given « € (0, 1) and a domain U C H,

we say that v € C$(U) if u € C(U) and
[ull ey < o0,
where

[ull ce @y = [ulce @y + lulle@y, (2.21)
and

lu(21) — u(z2)|
Ulpa(iy i = Sup ———————. 2.22
[ ]CS (U) Zl,ZQIéU S(Zl, ’22)a ( )

217#22

We say that u € C¢(U) if u € C¢(V) for all precompact open subsets V' € U, recalling that

U:=UUdU. Welet C¢),.(U) denote the linear subspace of functions v € C¢(U) such that
u € C¢(V) for every precompact open subset V & U.

It is known that C¢(U) is a Banach space [4} §1.1] with respect to the norm (2.21]). We recall
the following analogues of [I8, Theorem 8.27 & 8.29] and [20, Theorem 4.5.5 & 4.5.6].
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Theorem 2.10 (Hélder continuity near points in dp& for solutions to the variational equation).
[12, Theorem 1.11] Let p > max{4,2 + B} and let Ry be a positive constant. Then there are
positive constants, R1 = R1(Ro) < Ro, and C = C(A,p, Ry), and o = a(A,p, Ry) € (0,1) such
that the following holds. Let ¢ C H be a domain. If v € H'(O,w) satisfies the variational
equation with source function f € L*(0,w) and zy € 00 is such that

HN BRO(ZO) Cc 0,
and f obeys (2.13)), then u € C'fj‘(BEl(zo)), and

et < € (I linog, oi-n *+ Nelumqo o) - 229

Theorem 2.11 (Holder continuity near points in 9@ N 9,0 for solutions to the variational
equation). [I2, Theorem 1.11] Let K be a finite, right circular cone, let p > max{4,2 + }, and
let Ry be a positive constant. Then there are positive constants, Ry = Ri(K,Ry) < Ro, and
C = C(A,K,Ry,p), and o = (A, K,p, Ro) € (0,1), such that the following holds. Let ¢ G H
be a domain. If w € HY(O,w) satisfies the variational equation with source function
f € L*(0,w) and zg € 9oO N1 O is such that f obeys , and

u=0 on 010N Bgy(20) (in the sense of H'),

and O obeys an interior and exterior cone condition with cone K al zy and a uniform exterior
cone condition with cone K along 010 N Bg,(20), then u € C?(BEl (20)) and satisfies (2.23)).

Theorems and are not stated in the form we need for our application, since the
estimate (2.23) has an L* rather than an L? norm of u on the right-hand side and a Hélder
semi-norm rather than a norm of u on the left-hand side. However, by combining Theorems [2.5]

and we obtain

Theorem 2.12 (Holder continuity near points in 9y for solutions to the variational equation).
Let p > max{4,2 + S} and let Ry be a positive constant. Then there are positive constants,
R; = R1(Ry) < Ry, and C = C(A,p, Ry), and o = a(A,p, Ry) € (0,1) such that the following
holds. Let ¢ € H be a domain. If u € H'(O,w) satisfies the variational equation with
source function f € L*(0,w) and zg € 0y0 is such that

HN BRO(ZO) C 0,
and f obeys (2.13), then u € C?(BEI(ZO)) and

el B, o < € (”f”Lp(B§O<ZO),yﬁ—1> + ”“”LQ(B},JO(Zo))) : (2.24)
Similarly, by combining Theorems [2.6| and we obtain

Theorem 2.13 (Holder continuity near points in 9@ N 9,0 for solutions to the variational
equation). Let K be a finite, right circular cone, let p > max{4,2 + [}, and let Ry be a positive
constant. Then there are positive constants, R1 = Ri(K,Ry) < Ry, and C = C(A, K, Ry,p),
and o = (A, K,p,Ry) € (0,1), such that the following holds. Let ¢ G H be a domain. If
u € HY(O,w) satisfies the variational equation with source function f € L?(0,w) and

20 € 000 N 010 is such that f obeys (2.13), and
u=0 on 010N Bgy(20) (in the sense of H'),

and O obeys an interior and exterior cone condition with cone K al zy and a uniform exterior
cone condition with cone K along 010 N Br,(20), then u € C?(Bgl (20)) and satisfies (2.24)).
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The translation of [12] Theorem 1.11] into the forms stated in Theorems [2.10} [2.11} [2.12] and
2.13is given in Appendix
2.4. Higher-order Daskalopoulos-Hamilton Hélder spaces. We shall need the following

higher-order weighted Holder Cf “ and Cf 2T norms and Banach spaces pioneered by Daskalopou-
los and Hamilton [4]. We record their definition here for later reference.

Definition 2.14 (Cf’a norms and Banach spaces). [4, p. 902] Given an integer k > 0, « € (0, 1),
and a domain U C H, we say that u € C¥*(U) if u € C*(U) and

HUHC;WX(U) < o0,

where i
lllgso g = 3 1Dl oo - (2.25)
=0

When k = 0, we denote Co*(U) = C(U).

Definition 2.15 (CF*™ norms and Banach spaces). [ pp. 901-902] Given an integer k > 0,
a € (0,1), and a domain U C H, we say that u € Co* () if u € CF™*(T), the derivatives,
D];J“Q_ngl, 0 <m < k+2, of order k+ 2 are continuous on U, and the functions, yD];JrQ_mD;”,

0 < m < k+ 2, extend continuously up to the boundary, U, and those extensions belong to

C&(U). We define

fullgsase g = lelgsrie g, + D%l gse
We say thatﬁ uw e CPPU) if u € CF*T(V) for all precompact open subsets V € U. When
k =0, we denote C2*T(U) = C2+(D)).

For any non-negative integer k, we let CE(U) denote the linear subspace of functions u € C*(U)
such that u € C*(V) for every precompact open subset V' € U and define C§°(U) := Ng>oCE(U).

Note that we also have C§°(U) = ﬂkZOCf’O‘(Q) = ﬂkZOC§’2+a(Q).

3. H? REGULARITY FOR SOLUTIONS TO THE VARIATIONAL EQUATION

In this section, we develop Hﬁoc(@, to)-regularity results for a solution, u € H'(&,w), to the
variational equation , whose existence was established in [3]. In we give a self-contained
proof (that is, independent of results in [3]) of an important and powerful interior a priori estimate
(Proposition for solutions, u € H'(0,w), to the variational equation (2.11)) by exploiting
an idea of Koch [20]. In §3.2 we prove HZ (O,w)-regularity (Theorem for a solution,
u € HY(0,w), using finite-difference methods independent of results in [3]).

3.1. Interior Koch estimate and interior W'? regularity. We first recall the following
elementary a priori estimate for a solution to the variational equation (2.11}).

Lemma 3.1 (A priori estimate for solutions to the variational equation). [3, Lemma 3.20] Let
O C H be a domain. Then there is a positive constant, C = C'(A), such that the following holds.
If f € L*(0,w) and u € HY(O,w) is a solution to the variational equation ([2.11)), thefﬂ

lull gt (om) < C (120w + 1A+ y)ullL2(6m)) - (3.1)

6In [, p. 901], when defining the spaces C*** () and C*2* (&), it is assumed that . is a compact subset of
the closed half-plane, {y > 0}.
"The result trivially holds if (14 y)u ¢ L*(0, w).
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Recall from [3, Definition 3.1] that Ay := A + A(1 + y), for any constant A > 0.

Theorem 3.2 (Existence of smooth solutions on the half-plane). [14] Let f € Cg°(H) and A > 0.
Then there is a function u € C*°(H) such that

Ayu=f onH.

Proposition 3.3 (Koch estimate on the half-plane). There is a positive constant, C = C(A),
such that the following holds. If f € L*(H,w) and u € H'(H,w) is a solution to the variational

equation (2.11)) with ¢ = H, thenlﬂ

1Dl 20y < C (I1f1 L2y + 11+ %)l L2 (p110)) -
Remark 3.4 (Proof of the Koch estimate on the half-plane). Proposition is proved as [3|
Proposition 5.8] when ¢ = H with the aid of Theorem [3.2] (this is [3, Theorem 5.2] when & = H).

However, the hypothesis in [3, Proposition 5.8] that [3, Theorem 5.2] holds for ¢ & H and
u € H}(O,w) appears difficult to verify.

In order to prove an interior version of the Koch estimate on subdomains of the half-plane, we
shall need the following commutator identity.

Lemma 3.5 (Heston bilinear map commutator identity). [3, Corollary 2.46] Let u,v € H' (O, )
and let ¢ € C*°(0) be such that supp( C 0. Therﬂ

a(CUa U) = a(u, C’U) + ([A7 C]u7 U)Lz(ﬁ,m)- (32)
Proof. For u € C*®(0) and v € C*°(0), then
a(Cu,v) = (A(Cu),v)r2(ow) (by LemmalA.3)
= (CAU, V) 12(0 ) + ([A; ClU, V) 126 10)
= (Au, (V) 12(6w) + ([4, (Ju, V) 12(6 )
a(u C’U) + ([A7 C]U, U)B(ﬁ,m)-
By approximation, the result continues to hold for u € H'(€,w) and v € HY(0, ). O
Hence, if u € H'(0, ) is a solution to the variational equation (2.11]) and ¢ € C*°(&) is such
that supp ¢ C &, then (u € H'(H, w) obeys, for all v € H} (&, w),
a(C'LL, U) - a(u, C'U) + ([Aa C]ua U)LQ(fi’,m)
= (f7 CU)LQ(ﬁ,m) + ([A7 duv U)LQ(ﬁ,m)
= (Cf + [Aa C]U7U>L2(H,m)'

Because supp ( C 0, the preceding variational equation remains unchanged when the space of
test functions, H{ (0, ), is replaced by H!(H,w) and so (u € H'(H,w) obeys the variational
equation,

a(Cu, v) = (feus V) 2wy, Vv € H'(H,w), (3.3)
where, if height(supp ¢) < oo,

few = Cf + A, (u e L*(H, w). (3.4)

8The result trivially holds if (1 4 y)u ¢ L?(€, w).
9This a simpler version of [3, Corollary 2.46].
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We recall from [3, Equation (2.33)]) that
[A, (Jo = —y (¢ + 00Cy)va + (00C, + 07y )vy)
— 2 (Gow + 200Gy + 0% (3.5)
—(r—q—y/2)Gv — k(0 — y)(yv.

Noting that the derivatives v, and v, in (3.5 are multiplied by the factor y, we immediately
obtain the

Lemma 3.6 (LP commutator estimate). Let & € H be a domain and let M be a positive constant.

Then there is a positive constant, C = C(A, M), such that the following holds. If ( € C*(0) is
such that [|Cllc2(g) < M and v € WLP(6), for 1 < p < oo, the

loc

1A, CJvll Lo (o) < C (lyDvl Lo(o ) + (L 4+ 1)l oo w)) -

Moreover, if height(supp() < A < oo and p = 2, then there is a positive constant, C' =
C(A,M,N), such that

1A, Cvl[22(00) < Cllvll a1 (6 w)-
Recall from [3, Proposition 5.1] that, for a constant C' = C'(A),

Lemma 3.7 (Weighted a priori first-order derivative estimate for a solution to the variational
equation). [3, Proposition 5.1 (1)] There is a positive constant, C = C(A), such that the following
holds. Let ¢ C H be a domain, f € L*(0,w), and u € H*(O,w) be a solution to the variational

equation (2.11]). Theﬂ
lyDull 2y < C (1192 Flz2(asmy + 11+ )l 2oy ) (3.6)

We have the following interior version of Proposition for a solution u € H(€,w) to the
variational equation (2.11]), given f € L?(0,w).

Proposition 3.8 (Interior Koch estimate). Let & € H be a domain and let dy > 0. Then there
is a constant C = C(A,dy) such that the following holds. Let f € L*(0,w) and suppose that
u € HY(O,w) satisfies the variational equation . If 0' C O is a subdomain such that
0' C O and dist(0,0",0,0) > dy, then'!

|Dull 2oy < € (I +9)2Fllz2gom) + 10+ D)l z2(m) ) - (3.7)

Proof. Choose a cutoff function ¢ € C°°(&) such that 0 < ( < 1on ¢ and {( = 1 on 0" and
supp( C 0", for a subdomain ¢” C € such that 0" C 0 and dist(010",0,0) > di/2. The
conclusion now follows from Proposition Equations (3.3) and (3.4]), and Lemmas and
3.7 ]

The far more elementary a priori estimate in Lemma may also be localized by an argument
very similar to that used to prove Proposition |3.8

Lemma 3.9 (Interior H' a priori estimate for a solution to the variational equation). Let ¢ € H
be a domain and let di > 0. Then there is a constant C = C(A, dy) such that the following holds.

10T he result trivially holds if yDv ¢ LP(&,w) or (14 y)v ¢ LP(0,w).
HThe result trivially holds if (1+ y)"/2f ¢ L*(€,w) or (1 + y)u ¢ L*(0,w).
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Let f € L*(0,w) and suppose that u € HY(0,w) satisfies the variational equation (2.11). If
0' C 0 is a subdomain such that 0' C O and dist(0,0',0,0) > dy, then!!

lellror) < C (K0 + 92l 2oy + 11+ )l 2oy ) - (38)

Proof. Choose a cutoff function ¢ € C*°(&) such that 0 < ¢ < 1on ¢ and ( = 1 on 0" and
supp( C 0", for a subdomain ¢” C & such that 0" C O and dist(010",0,0) > di/2. The

conclusion now follows from Lemma Equations (3.3 and (3.4]), and Lemmas and . O
3.2. Interior H? regularity. Recall from [3, Definition 2.20] that
H2(0,1) = {u € W2X(0) : |[ull sy < o0}, (3.9)
where
ullr2(6 ) = / (V1D + (1 4 y)*[Dul* + (1 + y)u?) w de dy. (3.10)
' o
We say that v € HZ (O, w) if u € H*(U,w) for every U € 0.
We denote the finite difference with respect to x of a function v on & by
1
5217(1’,?;) = E(U(x_‘_ha y) _U(:an))? (311)

for h € R\ {0} and all (z,y) € & with (x + h,y) € €. We have the following analogue and
extension of [0, Theorem 5.8.3] or [18, Lemmas 7.23 & 7.24].

Lemma 3.10 (Convergence and bounds on finite differences). Let & S H be a domain and let
0" C O be a subdomain such that 0' C O.
(1) There is a constant C = C(dist(01 0", 0, 0)) such that the following holds. If u € L*(0,w)
with u, € L*(0,w), then
620l 12(07 ) < Cllttell12(6 )
for all h € R such that 0 < 2|h| < dist(010”,0,0).
(2) If u € L*(0,w) and there is a constant K > 0 such that
1620l 1261y < K,

for all h € R such that 0 < 2|h| < dist(010",0,0), then u, € L*(0", 1) exists and obeys
vzl L2(o ) < K.
Proof. The proof of Item (1) adapts line-by-line from the proofs of [6, Theorem 5.8.3 (i)] or [18,
Lemma 7.23]. To prove Item , it is enough to notice that L?(¢&,w) is a separable Hilbert space

(therefore, reflexive also) and so [I8, Problem 5.4] applies. The proof of [I8, Lemma 7.24] now
adapts line-by-line. O

We shall adapt the proof of [I8, Theorem 8.8] in order to establish

Theorem 3.11 (Interior regularity of second-order derivatives parallel to the degenerate bound-
ary). Let 0 C H be a domain and let dy > 0. Then there is a constant C = C(A,dy) such that
the following holds. Let f € L?(0,w) and suppose that u € H'(0,w) satisfies the variational
equation . If 0' C O is a subdomain such that 0' C O and dist(0,0",0,0) > dy, therm

YUz, YUzy € L(0',10),

12The result trivially holds if (1 + y)u, ¢ L*(0,w).
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and
lyDug || r2(07 oy < C (HfHLz(ﬁ,m) + 192 Dull 26wy + (1 + YUl L2(00) + HUHL?(ﬁ,m)) :

Remark 3.12 (Comparison with regularity results and their proofs in [3]). While stronger results
than Theorem are proved as Corollary 5.15 and Theorem 5.17 in [3], where (in the case of [3|
Corollary 5.15]) the subdomain ¢ is replaced by ¢ under suitable hypotheses on 910 and Duy
is replaced by D?u, the proof of [3, Corollary 5.15] relies on a hypothesis (see [3, Theorem 5.2])

in [3] that there exist solutions u € C°°(€) to Au= f on € and u =0 on 0,0 when f € C§°(0)
and 010 is C*°-transverse to 0H. In contrast, our proof of Theorem does not rely on [3|
Theorem 5.2], whose proof appears difficult, and instead uses more elementary methods (finite
differences, in particular). See also Remark

Using the L?(0, m)—analoguﬂ of the finite-difference integration-by-parts formula [0, Equation
(6.3.16)], we find that, for f,v € L?(0, ),

— (f.0:M0) 12(6) = (0" /10)62 £, 0) 12610y + ((6210/10) £,0) 126 10 (3.12)
where the finite-difference product rule [6, Equation (6.3.17)] gives
SM(wf) = whdl f + fow  ae. on O,
with ro"(z,y) := w(z + h,y).

Proof of Theorem[3.11. We may assume without loss of generality that (1 + y)u, € L?(0,w).
From the integral identities (2.7) and (2.11]) (using our Assumption that by = 0), we have

1 2
5 (uxvx + 00UyV; + 00 ULVy + O uyvy) ywdrdy
%

ol x
= — Uy + 00Uy) V ———y o dxd

3 (v em)v iy dy
+/a1umvymda:dy—/couvmdacdy—i—/fvmd:vdy, Vv € C°(0).

% o %

We may replace v by the difference quotient, ¢, hv, in the preceding identity, provided |h| <
1 dist(suppv, 0, 0), and use the L?*(&, 1) finite-difference integration-by-parts formula (3.12) to
find that

/ (ro" /10) (((ﬁjux)vx + 008, ) vy + 00 (8uy) v, + 02(52%)%) ywdzdy
7
+ / (6510 /10) (uxvx + 00Uy, + 00ULVy + 02uyvy) y o dz dy

%

= —/ (ux(éghvz) + 00y (65 "0, 4 0o (5, v, + 02uy(5;hvy)) ywdrdy
o

13The proof adapts line-by-line.
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and give

1
~3 /ﬁ(mh/m) <((52u$)vm + Qa(éguy)vz + ga(égux)vy + 02(5§uy)vy) ywdz dy
1

=3 /ﬁ(éﬁm/m) (UpVa + 00Uy, + 00ULVy + 0 uyvy ) Y10 d dy

+Z/(uz+gouy)( v) y o dz dy
o

—i—/ a1 (6, )y vo da dy —
%

\/14—952

cou(d; " mdmdy—i—/f v) o dx dy.
%

Therefore,

1
5 /ﬁ(mh/m) (((ﬁfugc)vx + 00(8"uy v, + 00 (80 uy vy + 02((5§uy)vy> ywdzdy

< Cly"*Dul 20y (192Dl 2(0m) + 192850 200
+C (J[ull 2oy + 1f |l z2(6 1)) 16201 £2(6.10)
< Clly"2Dull 26 192DV L2(6 1) + C (Iull t2(6) + Il 22(00)) IVall £2(6 1)

where the final inequality follows from Lemma (). Now choose ¢ € C*(0) with 0 < ( <1
on ¢ and ( = 1 on ¢' and supp( C O, and set v = y¢26"u with |h| < %dist(supp(,@lﬁ).
Therefore, applying (2.9)), we obtain

1/0/ (mh/m)|CD5Zu\2y2mdxdy

0

< ;/ (0" /10)¢? ((5£uz)2 + 200 (6"uy ) (67u,) + 02(521@)2) V2 1o da dy,
0

and using

yC2opua = (yC0ju)e — 2yCCadyu = va — 2yCCadyu,
y¢Popuy = (yogu)y — Coju — 2yCCy0hu = vy — (¢ + 2y¢C,) 0 u,
we obtain
o | (1 )¢ DBk dady
%
1
<3 /ﬁ (" /10) ((8%112) (v — 29CCadtu) + 00 (Fuy) (v — 29CCadlu)
+ 00 (6" u,) (vy — (% + 2yCCy)5Zu> + 02((52%) (Uy — (% + 2yC§y)(52u>) y o dx dy
— 5 [ (0" 10) (6Pus)o+ e0(8hu, o, + 0r(Eue)o, + 0*(8hu, v, ) yo dady
2 Jo
~ 5 | o /o) (02 20Catl g8, 2000
+ 00(0%u,) (7 + 250G, )0ku + 0 (3, ) (C? + 2yCG,)oku ) y o da dy.
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Hence, there is a positive constant C' = C(A, dist(010”,0,0)) such that
1Cy DS ull72 (6 o)
< C|y"*D 12D +C - )
< Clly""Dul| 2o mw)ly™"“Dvl| 12 (6 ) (lull L2 (0 0y + 11l L2(0,10)) 102l £2 (6 0)
+ C|[CyDSMul 126 ) (1 + 1)S20| 12 (supp ¢.0)
< Clly""*Dull r2(6 o) (HC?JD‘S];UHB(@m) + 11+ y)52u||L2(suppC,m))
+C (Jlull 2oy + I1fllz2(6m)) <||Cy5ﬁux||L2(ﬁ,m) + ||y52u||L2(supp<,m))
+ CHcyD(S;Lu”LQ(ﬁ,m)H(l + y)éz}vLuHLQ(supp(,m)v
where, to obtain the final inequality, we used
Vo = YC 8 un + 2yCCadyu, vy = yCP8uy + (¢F + 2y¢C,) .

Applying Young’s inequality (that is, 2ab < ca® + 712, for any € > 0 and a,b € R) to the terms
on the right containing the factor ||CyDé&"u|| 12(0w) and rearranging, we obtain

ICyDETul1Z 2 )
< C”y1/2DuH%Q(@m) + CHyl/QDuHL2(ﬁ,m)H(1 + y)dgicluHLQ(suppC,m)

+C (lull 2oy + 1 122(0m0) " + C (1l z2(0m0) + | F122(0.0)) 10820 22 s )
+ O+ )02 e
for all h € R such that |h| < %dist(supp ¢,010). Again applying Lemma , we see that
lyDutal| 251 o)
< Clly"2Dull 126 ) (Hyl/QDu||L2(ﬁ,m) +[I(1 + y)ua:HL?(ﬁ,m))
+ C (llull L2(om) + 1fl22(0m0)) ([l 2(0m) + 11 12(00) + [Ytell L2(0 1))
+ Ol (1 + y)uzlZ2(p )
and taking square roots completes the proof. O
Proceeding by analogy with the proof of [I8, Theorem 8.12] to estimate yu,,, we obtain

Lemma 3.13 (Interior regularity of second-order derivatives orthogonal to the degenerate bound-
ary). There is a constant C = C(A) such that the following holds. Let ¢ & H be a domain and
let 0' € O be a subdomain. Let f € L*(0,w) and suppose that v € H'(O,w) satisfies the
variational equation [2.11). If yuzs, yugy € L*(0',w), then

Ylyy € L*(0',w),
and
[ytyyll 207 1) < C (1ytiazll 207 w) + 1Yyl L2(07 ) + (1 + 3) Dull 12(67 )
+ llull 207 o) + 1l 22(07 1)) -

Proof. From [I8, Theorem 8.8], we know that u € VVlif(ﬁ) and Au = f a.e. on O, and thus by

(1.3), we have
o2

5 Yy = —% (Uzz + 200Uyy) — (co —q— %) Uz — k(0 — y)uy + cou — f.

(3.13)
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Hence, there is a constant, C' = C(A), such that (3.13) holds. O

Therefore, we find that

Theorem 3.14 (Interior regularity of second-order derivatives). Let & C H be a domain and let
d1 > 0. Then there is a constant C = C(A,dy) such that the following holds. Let f € L*(0,w)
and suppose that u € H(0,w) satisfies the variational equation @2-11)). If (1+y)Y/2f and (1+y)u
belong to L?(0,w) and &' C O is a subdomain such that ' C O and dist(0,0",0,0) > dy, then

YUgg, YUzy, YUyy € L2(6/7m)>
and
lyD?ull 20y < € (114 9)2 L2y + 10+ 9l z2(0m)) -

Proof. The conclusion follows by combining the estimates in Proposition [3.8] Theorem [3.11
Lemma and the a priori H!(&,w)-estimate for a solution u given by Lemma and the
L?(0,w)-estimate for yDu in Lemma O

Consequently, we have the

Theorem 3.15 (Interior H? regularity and a priori estimate). Let & € H be a domain and let
d1 > 0. Then there is a constant C = C(A,dy) such that the following holds. If f € L*(0, )
and uw € H'(O,w) satisfies the variational equation (2.11), then u € HZ (O, w). Moreover, if
(1+y)Y2f and (1 4 y)u belong to L*(0,w) and O’ C O is a subdomain such that 6" C O and
dist(10",010) > dy, then u € H*(0',w) and

lullzz(ormy < € (10 + )220y + 10+ pulzzom ) -

Proof. The conclusion follows by combining Proposition [3.8 with Theorem the a priori
H'(0,)-estimate for a solution u given by Lemma and the L?(0,w)-estimate for yDu in
Lemma 3.7 O

In the sequel, we shall most often apply Theorem [3.15]in the following special form.

Theorem 3.16 (Interior H? regularity for a solution to the variational equation). Let ¢ € H be a
domain and let R < Ry be positive constants. Then there is a positive constant, C = C(A, R, Ry),
such that the following holds. If f € L*(0,w) and u € H*(0,w) is a solution to the variational
equation , and zg € OO is such that

HHBRO(Z()) C 0,

then
u € H2(BE(ZO)7 m)7

and

lllsienm < € (125, o + o, o) (3.0
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4. HIGHER-ORDER SOBOLEV REGULARITY FOR SOLUTIONS TO THE VARIATIONAL EQUATION

In this section, we develop higher-order “interior” regularity results for a solution, u € H' (0, 1),
to the variational equation . After providing motivation for their construction in §4.1} we
describe the families of higher-order weighted Sobolev spaces which we shall need for this article,
namely #%(0,w) (Definition and W*P(0,w) (Definition .

We begin our development of higher-order Sobolev regularity theory in where we establish
HZ (0, w)-regularity (Proposition of the derivatives, D¥u, of a solution, u € H'(0,w), to
the variational equation (2.11)), while in we establish H2 (&, w)-regularity (Proposition
of the derivative, u,. The preceding regularity results are combined in to give J£3 (0, w)-

loc

regularity (Theorem [4.14)) of a solution, u € H'(&,1). We conclude in §4.5{ with a proof of two
of the main results of our article, Theorems |1.3|and Theorem and " ?(0, w)-regularity of
a solution, u € H'(0,w), for any integer k > 0.

4.1. Motivation and definition of higher-order weighted Sobolev norms. We now extend
our previous definition of H*(&,w) when ¢ = 0,1,2 (see [3, Definitions 2.15 & 2.20]) to allow
¢>2. For k > 0, it is natural to define H**2(&,w) as a Sobolev space contained in the domain
of D’;_’”D;”A, so the operators

Dy MDA H¥ (0, w) = L*(0,w), meN, 0<m<k,

are bounded, and we use this principle as a guide to our definition.
From the expression (|1.3|) for A, we have, for v € C*>°(0),

[Dy, AJv :== DyAv — AD,v =0 on O,

and so
(DT, Alv = AD7'v — D' Av =0 on 0, YmeN,

whereas

1 1
[Dy, Alv = DyAv — ADyv = —5 (vm + 20005y + gzvyy) + 5% + Kkvy on O, (4.1)

is a (non-trivial) second-order, elliptic operator with constant coefficients (and therefore commutes
with both D, and D,). Hence,

D;Av = DyADyv + Dy[Dy, Av
= AD}v + [Dy, A|Dyv + [Dy, A]D,v
= AD}v + 2[D,, A]Dyv,
while
DjAv = D;AD + D;[D,, A
= AD}v +2[Dy, A|D2v + Dy, A]D2v
= AD}v +3[D,, A|Dv,
and, by induction,
Dy, Alv = D' Av — ADy'v = m[Dy,A]D’J“lv on 0, VmeN.
By combining the two cases, we obtain
[DE~" Dy, Ajo = Dy~ Dy Av — ADE™"Di"v = m[D,, AIDE""D;* v on O, (4.2)
for all k,m € N with 0 < m < k.
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Given v € H*(0,w) and k > 2 and a suitable definition of H*(&,w), we should expect that
D' Dy Av € L*(0,w), 0<m+n<k-2
and so,
ADPDyv, [Dy, AIDI'Dy v € L*(0,w), 0<m+n<k-2
The second condition is fulfilled when
D' Dyv € L*(0,w), 0<m+n<k-1,
whereas the expression for A implies that the first condition is fulfilled when
yDy'Dyv € L*(0,w), 1<m+n<k,
DI'Dyv e L*(0,w), 0<m+n<k—1.

Therefore, when k > 2, and keeping in mind that we want H*(0,w) ¢ H'(0,w), for all k > 2,
we make the

Definition 4.1 (Higher-order weighted Sobolev spaces). Let ¢ € H be a domain. For any integer
k>1, set

H*2(0, 1) := {v € WE(6) : o)l ey < oo} :

loc

where
k+1 ‘
\|U||§Ik+2(@m) ::/y2|Dk+2v|2mdmdy—|—Z/(1+y)2|DJU|2md:L‘d,y
g =179 (4.3)

+ / (1 + y)v? v dz dy,
o

and D’v denotes the vector (D%me;”v :0<m<yj),for0<j<k.

As we shall later see, Definition {4.1] is not well-adapted to a development of a higher-order
regularity theory for solutions to or , and it is best regarded as a stepping stone to the
one we ultimately adopt for our regularity theory, namely Definition By way of motivation,
we observe that the expression for the commutator [D,, A] involves both derivatives with
respect to x and y. The alternative “commutator” provided by will prove more useful than
(4.1) in our approach to the higher-order regularity since it only involves derivatives with respect
to x.

Lemma 4.2 (Alternative commutator of A and Dy). For any integer m > 1,

Dy Av — Ay Dj'v = mBD) v on 0, Vv € C™(H), (4.4)
where
1 1
By = —5Vaz + ZVe (4.5)

and A,, is obtained from the expression for A in (1.3)) by replacing 0 by 0,, :== 0+mo?/(2k) (and
B by Bm =B +m), and q by ¢, 1= q — moo, and co by com = co + mk.
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Proof. We compute that
__ Y 2 Yy
DyAv = ) (Vawy + 200Vgyy + 07 vyyy) — (o — q — o) Vay — K(0 — y)vyy

1 1
— = (Vg + 20005y + 0vyy) + 5z + KUy + Covy

2
2
Y ) g
=-3 (vmy + 20005y, + 02vyyy) — (co —q+ 00— 5) Vgy — K <9 + on y> Vyy
1

1
— 5V + Ve + (co + K)vy

= AlDyU + BU,

where A; is defined by replacing 6 by 61 = 6+02/(2k) (and B by 1 = +1), and ¢ by ¢1 = ¢— 00,
and the coefficient, cp, of v by cp1 = co + K, and Bv = —%fum + %vx. Note that B is a linear,
second-order differential operator which commutes with D,. Computing DzAU, we see that

D;Av = D (DyAv) = D, (A, Dyv + Bv)
= AyDv + BDyv + DyBu
= AyDv + 2BDyv,
where Aj is defined by replacing 01 by 6 = 01 +02%/(2k) = 0+20%/(2k) (and B1 by B2 = f1+1 =

B+2), and ¢ by ¢2 = ¢1 — 00 = ¢ —2p0, and the coefficient, cg 1, of v by cp2 = co1+ K = co+2k.
It is now clear that the stated formula for Dj Av follows by induction. O

Recall that the weight function (2.5)) for our weighted Sobolev spaces is given by
w(z,y) =y’ leTVITI (2,y) € H,

where 3 = 2k6/0? and 1 = 2k/0?, and thus is defined by the coefficients of A (and ). We denote
the weight defined by the corresponding coefficients of the operator A,, by

W (2,y) = y™Mo(z,y) = yPT T leT VIR (p ) e H, m o> 1, (4.6)

noting that 3,, = 8+ m and k,, = k. Similarly, the bilinear map, a(u, v), defined in (2.7)) by the
coefficients of A (and ) has an analogue, which we denote by a,,(u, v), defined by the coefficients

of Ay, (and 7), for u € C*°(0) and v € C°(C), with the property that

U (U, 0) = (A, V) 12(010,,), YU € CF(0), v e C5°(0). (4.7)

When k,m € N, one may define H*(&,1,,) by simply replacing the weight to by tv,, in the
definitions of H*(&,w). We shall need to introduce the following alternative definition of higher-
order Sobolev spaces which lie between H*+2(&, ;) and H**2(&, w) when k > 1.

Definition 4.3 (Alternative higher-order weighted Sobolev spaces). Let ¢ € H be a domain.
For £ = 0,1,2, define (0, w) := H*(0,w) and, for any integer k > 1, set

loc

A0 1) = {U € WE2(0) ¢ vl sprer (o) < oo} ,
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where

lol2ns20m) = /ﬁ v (1D 20 + | D Dyof? + | DED ) w da dy

k

+Z/y2|D§_mD;”+2U|2mmd;rdy
m=1 4
k . .

+Z/ (142 (IDIof + |DiDywf?) o de dy
. o
7=0

kg
+ Z Z / (1+ y)2\D;_mD;”+1v]2 10, dz dy
j=1m=1"¢

+ / (1 + y)v? o dx dy.
o
We denote s#2(0,w) = H?(0, 1) when k = 0.
For example, if £ =1,
1% (6m) = /ﬁ Y (V3 + Uiy + Vayy + Y0sy,) W dzdy

+ /ﬁ(l + )% (03, + va, + yvy,) wdzdy

+ / (1+y)* (v2 —f—v;) o dx dy + / (1 + y)v*wda dy.
% %
Observe that if & C H is a subdomain of finite height, then
L*(0,w) C L*(0,w,,),
for all m € N. When k£ > 1,
[Vl 26 10p) < Cllvllserr2 (o) < ClIVI EE+2(6 )5
and so
H*2(0,w) c %20, w) ¢ H*2(0,10},),
when € has finite height. Definition [4.3] gives the following inductive inequality,
HU||§fk+3(ﬁ w) < / y? (|D§+3vl2 + |DF2 Dy + ‘DI;—HDZU’Q) o dx dy
’ o

k+1

+> / Y| DETIm D2y 1o, da dy
m=1 o

+/(1+y)2 (|D’;+2v\2+ \D’;“Dyv\?) o dz dy
%
k41

+ 30 [ @ gD o oy, o dy
m=1 4

+ ||U||ifk+2(ﬁ,m)7
for k > 0. Equation ([4.22)) gives the inductive inequality for #3(&,w).

27

(4.10)

(4.11)
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We recall the definition of a weighted Sobolev space and norm, where the weight is the same
for all derivatives of the function (denoted Wap (0) in [33] Definition 2.1.1], though we shall not
require that w be an A, weight in this article).

Definition 4.4 (Higher-order weighted Sobolev spaces with a single weight). Let ¢ € H be a
domain and let w € LL (&) be a weight function, so that w > 0 a.e. on &. For any 1 < p < oo
and integer k£ > 0, set

WP (6, w) = {u € WEP(O) : ollywrnom) < oo} :

loc

where
1/p

k
lollwin (o) = Z/ DivPwdedy| (4.12)
i=0"7

We denote W*P(&,w) = LP(0,w) when k = 0.

Finally, we shall need the following “interior” versions of the weighted Sobolev spaces defined
in this subsection.

Definition 4.5 (Interior weighted Sobolev norms). Let T C 9€ be relatively open in R? and
let K > 0 be an integer. We say that v € Hf (0 U T,w) (respectively, J4% (0 U T,w) or

loc

WP(6 U T,w)) if for every subdomain U C & such that U € ¢ UT, we have v € H¥(U, )

loc

(respectively, % (U, w) or WkP(U, w)).

4.2. Interior H? regularity for first-order derivatives parallel to the degenerate bound-
ary. We proceed in a manner similar to that in [I8] p. 186].

Lemma 4.6 (Variational equation for the derivative of a solution with respect to x). Let ¢ € H
be a domain with finite height ['Y| let f € L?(0,w), and suppose that u € H'(O,w) satisfies the

variational equation . 1]
fewh?(0,w), uwe H*O,m), and u, € H(0,w),
then u, € H'(O,w) obeys
a(uz,v) = (fz,0)2(6 ) (4.13)
for all v € H} (O, ).
Proof. Suppose first that u € C*(&) and v € C§°(0). Then v, € C$°(0) and
a(u, —vz) = (Au, —v)[2(p ) (by Lemma [A.3)

= (Aug, ) 12(0 ) + (A, v(l0g 1)) 126 1)

= a(ug,v) + (Au, v(10g W)s) 12(0 1),
where from we see that

x

log 1), = —y————

14 A5 one can see from the proof, the hypothesis that ¢ has finite height is only used in a very mild way and
the condition could be removed using more precise bounds, but we shall not need such an extension.

L5While the right-hand side of the identity is well-defined when f, € L?(&,w), we appeal to an approxi-
mation argument requiring f € W2(0, w).

on H.
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Now suppose, more generally, that v € H?(0,w) with u, € H'(0,w), as in our hypotheses.
For v € C§°(€), we may choose a subdomain ¢’ € ¢ such that suppv C 0 and 0,0 is C'-
orthogonal to OH in the sense of Definition According to Theorem there is a sequence
{un}nen C C®(0") such that u, — u in H*(0’,w) as n — oo and hence, for each v € C§°(&)
with suppv C &,

(Atn, ) 120 0) = (AU V) 120wy and  a(unz,v) = a(uz,v), n — oo,
since, in the second case, by (2.7)) we see that

|a(tn 2 — ug,v)| < C (H?JD(un,aﬁ - uw)”L?(ﬁ,m) + [Jun,z — quLQ(ﬁ,m)) ”UHWL?(K/’,m)
< Cllun — ull g2 (6w IV lwi2(6,m)

where C' = C'(height(&)). Therefore, by approximation and also the fact that v € C§°(2) is
arbitrary, the preceding variational equation continues to hold for u € H?(0,w) with u, €
H(0,w), that is,

a(u, —vz) = a(ug, v) + (Au, v(log m)m)p(@m), Yv € C3°(0).
Since u € H?*(0,w), then (2.11) implies that Au = f a.e. on & by Lemma and thus the
preceding identity gives

a(u, _vx) = a(ux,v) + (fvv(logm)x)LQ(ﬁ,m)’ Vv € C((])o(@)
Moreover, by substituting —v, for v in (2.11]), using the fact that f € W12(&0,w) by hypothesis,
so f, € L?(0,w), and appealing to Theorem |A.2) ato choose a sequence { fpneny C C*°(0) such
that f,, — f in Wh2(0,w) and so f,, . — f in as n — 00, we obtain

a(u, —vz) = (f, Uac)L2 (6,w0)
= (fo, V) 2(00) + (fiv(l0gW)2) 1260y, Vv € C57(0),

where the integration-by-parts identity is justified by approximation, just as in the proof of
Lemma Combining these identities yields (4.13) for all v € C§°(&) and hence for all v €
H(O, ). O

Remark 4.7 (Need for the regularity condition on u in Lemma . If we only knew that u €
H?(0, 1), then the definition of H?(0, ) would imply that y|D?ul, (1+y)|Du| € L?(0, )
and so y'/?|Dug|, (1 + y)"?u, € L*(0,yw) = L*(0,w;) and thus u, € H' (O, wy), but not
necessarily H*(0,w), by the definition of HY(0,w).

Lemma 4.8 (Variational equation for higher-order derivatives of a solution with respect to x).
Let © C H be a domain with finite height, let k > 1 be an integer, let f € L?>(0,w), and suppose
that uw € H'(0,w) satisfies the variational equation (2.11)). If

DifeL?(0,w), we A0, w), and DFue HY(O,w),
then DEu € HY(0,w) obeys
a(Dyu,v) = (DS f,0) 20y, 0 € Hy (€, ). (4.14)
Proof. By hypothesis,
fe € L*(0,w), ue H*O,w), and wu, € H(0O,w),
and so Lemma [£.6] implies that u, obeys
(g, 0) = (for V) 2(0m)s V0 € Hy(0, ).
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By induction we may assume that the conclusion holds when £ is replaced by £ — 1. Note that
u € #*T1(0, ) by hypothesis and so, by Definition we see that u, obeys
yDFu,, yDﬁleyux, yD]lf*QDiuﬂt € L*(0,w),
yDY "Dy € L*(0,10,,-2) 3<m < k.
Therefore, u € %0, 0) = u, € H#*(0,1w) when k > 2. Since
DElf. = Dkf e 12(0,w), wu, € #*(0,w), and DFlu, = DFuec H(O,w),
we can apply Lemma to the preceding variational equation, with k — 1 and u, € H(&,w)
and f, € L?(0,w) replacing k and w € H'(0,w) and f € L?(0,w), respectively, to give
a(DI;u, U) = a(D];_luza ’U) = (Dlg_lfﬂfﬁ U)LQ(/)’,m) - (Dlng, U>L2(fj",m)7 Vo € H&(ﬁv m)'
This completes the proof. ]
In order to establish a refinement of Lemma which yields u, € H'(€, ) as a conclusion,

assuming only u € H%(0, ), we shall need to substitute v € C§°(0"), where &’ € 0, by a finite
difference, —9;"v, rather than —v,, by analogy with the proof of [I8, Theorem 8.8].

Proposition 4.9 (Variational equation for the derivative of a solution with respect to x). Let
0 C H be a domain and let dy, A be positive constants. Then there is a positive constant,

C = C(A,dy, N), such that the following holds. Let f € L?*(0,w) and suppose that u € H' (0, w)
satisfies the variational equation (2.11)). If
fo € L*(0,w),
then u, € HL (O,w) and, for any subdomain &' C O with O0' C O and dist(0,0",0,0) > dy and
height(€”) < A, one has
u, € HY(0' ) w),
and
a(ux, ) (fx, )L2 0’ 1) Yv € HOI(Q/,TU), (415)
and
el 1o w) < C (1fallL2(om) + 1 22(00) + Nl L2(00)) -
Proof. We partially follow the idea of the proof of [18, Theorem 8.8], but the argument is simpler
here because of the relatively strong hypothesis that f, € ;2(6”, ) as well as f € L?(0,w)).
Choose a subdomain ¢ C ¢ such that ¢’ C ¢" and 0" C € and 00" is C'-orthogonal to
OH, while dist(0167,0,0") > di/4 and dist(9,0",0:10) > d1/2 and height(&”) < 2A. Observe
that if (z,y) € 0", then (z £ h,y) € € provided dist((x,y),010) < |h|, so in choosing h, we shall
always assume that 0 < |h| < 3 dist(6”,0,0). For any v € C§°(0"), observe that §,"v € C§°(0),

so we may substitute —d, hy for v as a test function in (2.11)).
For any w € C*(0), noting that §? Aw = Ad"w on 0", we obtain

—a(w, ;") = —(Aw, (5;hv)Lz(@m) (by Lemma [A.3)
= (6L )0+ (v G )3y (b BID)
= (Ad}w, (10" /0)v) 12 (¢ ) + (Aw, (8710/10)0) 126 )
a(5h , (0" /w)v) + a(w, (9w /w)v), v e C3(L"),
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where, in the last equality, we use the fact that (" /to)v € C§°(£") when v € C$°(£"), recalling

by ([2.5)) that
w(z,y) =y leT VI (1 y) € HL

Recall that suppv C ", Since C*°(&") is dense in H'(€”, 1) by Theorem we may choose
{wn }nen C C®(0") with w, — u strongly in H' (0", 1) to see that

—a(u, 8, ") = a(6"u, (0" /r0)v) + a(u, (' /w)v), Yo e C(0").

Therefore, for all v € C§°(0"), the preceding identity yields

a(du, (0" /10)v) = —a(u, 5_h ) = a(u, (810 /w)v)

—(£,6;"0) 12(000) — (f (0010 /10)0) 1260 (by 211))
(5h £y (" /w)v) 20wy (by B12)),
and consequently,
a(8pu, v) = (54, v)L2(om ), YU € CP(0").
Since C§°(€") is dense in H} (0", 1) by definition, we obtain
a(Shu,v) = (54 f,0) p2(om ), V0 € Hy (0", 10). (4.16)

The interior a priori estimate for solutions to the preceding equation yields

1620l g1 (g7 o) < C (H5]£fHL2(ﬁ~,m) + H5Qu||L2(ﬁ~,m)) , 0< 2| < dist(0",0,0),

where C' = C(A,A). Choose a subdomain ¢ C & such that 6" C 6" and 0" C 0, while
dist(010",0,0) > dy /4 and dist(0,0",0,0"") > d; /8 and height(0") < 4A. By Lemma3.10
and the facts that f, € L%(&,w) by hypothesis and u, € L?(¢",w) by Proposition @ we see
that

162 1l 207 o) + 1000l L2(67 w0y < 1 f2llz2(om ) + [zl z2(om wy, 0 < 2|h| < dist(6”,0.0™),

and so

1606l 111 (07 0y < C (Ifallp2(6 10y + 1l L2(om 1)) » O < 2|h| < dist(6”,0,6™).
Therefore, since (67u), = 6%u, and (6%u), = 6u,, we have
15"/ 260z £2(0r ) < Ch,s
ly* 2% uyl| 1267 ) < C,
1620l p2(pr )y < C1, 0 < 2|| < dist(6",010"),
where C1 = C(||fzllz2(0 1) w))-  Lemma (and its proof) gives u, €

H' (0", 1) and weak convergence, after passing to a diagonal subsequence,

yl/Qégux — y1/2um, yl/Qég‘uy — yl/Quzy, 5’;u — u, weakly in L?(0", 1) as h — 0,
and thus,
6y — u, weakly in H' (0, w) as h — 0.
Therefore,
o130y < Vi ing 8211y

and, by combining the preceding inequalities,

HUJ?HHl(/f’,m) <C (Hfa:”LQ(ﬁ””,m) + Hur”LQ(/f’”,m)) .
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Finally, Proposition yields

el 2o w) < C (1fl2(0m) + 1l L2060 m0)) -

for C = C(A,d;,A) and the conclusion follows from the preceding two estimates. O

Clearly, by repeatedly applying Proposition induction on k£ > 1 yields the following refine-
ment of Lemma [4.8

Proposition 4.10 (Variational equation for higher-order derivatives of a solution with respect
to z). Let ¢ C H be a domain, let di, A be positive constants, and let k > 1 be an integer. Then
there is a positive constant, C = C(A,dy,k,N), such that the following holds. Let f € L?(0,w)
and suppose that u € H' (0, w) satisfies the variational equation . If

Dif € I*(0,w), 1<j<k,

then DFu € Hl} (O,w) and, for any subdomain 0’ C O with 0' C O and dist(0,0",0,0) > dy
and height(0") < A, one has
Diu e HY(0',w),

and
Cl(.D!;U,’U) = (D:];fa U)L2(ﬁ”,m)7 Vv € H&(ﬁlam)a
and
k: .
I DEull g (pr oy < C Z ID2fll22(0 ) + 1wl £2(6 1)
j=0

Proof. Proposition [4.9]yields the conclusion when k = 1 and so we can take k > 2 and assume, by
induction, that the result holds for £—1 in place of k. Choose a subdomain & C & with &' C 0"
and 0" C O, while dist(0,0",0,0") > dy/4 and dist(010",0:0) > dy/2 and height(0") < 2A.
By the induction hypothesis, Df~1u € HL (€,w) N HY(0",w) and D¥~'u obeys

CL(D]‘,L?*I'LL, ’U) = (Diilf, v)Lz(ﬁ”,m)a Yv € H& (@”, m)

Hence, by applying Proposition to the preceding variational equation in place of (2.11)), we
see that DFu € H'(0”,1w) and, because the choice of subdomain ¢” C ¢ with 6" C € was
arbitrary, that also D¥u € H! (O,w). Moreover, Proposition yields

DSl g pr ) < C (HD]g?fHL?(ﬁ//,m) + IDE fll p2(om ) + ||DI;_1U||L2(ﬁ”,m)) »
for C = C(A,dy, A), while the induction hypothesis gives

k—1
IDE ull g om ) < C | D IDE lr20,m) + ullz2(om0) | »
§=0
for C = C(A,dy,k,A). We obtain the conclusion by combining the preceding estimates. O

As the regularity questions of interest to us only concern regularity of a solution to the vari-
ational equation ([2.11)), it will be convenient to consider, for zyp € OH and 0 < R < Ry < Ry,
half-balls U ¢ U’ C V, where

U:=Bj(z), U :=Bp (%), and V = By (20), (4.17)

and we recall that B} (29) := Bpr(z0) N O, for any R > 0 and zo € R?. Note that U € U’ and
UeV.



HIGHER-ORDER REGULARITY FOR SOLUTIONS TO VARIATIONAL EQUATIONS 33

Proposition 4.11 (Interior H? regularity for higher-order derivatives of a solution with respect to
x). Let R < Ry be positive constants and let k > 1 be an integer. Then there is a positive constant,
C = C(A,k, R, Ry), such that the following holds. Let & € H be a domain, let f € L*(0, ), and
suppose that w € H'(O,w) is a solution to the variational equation . If U CV are as in
with V C O, and

Dif € I*(V,w), 1<j<k,

then
Dku e H*(U, w),
and
k
I DEull g2ty < C Z IDLf1 vy + 1ull 22 vy | - (4.18)
=0

Proof. Choose an auxiliary half-ball, U’ as in (4.17)), with U’ = BEI(Z()) and U c U’ C V, and
fix R1 = (R+ Ry)/2. Since D%f € L*(V,w), 1 < j < k by hypothesis, we can apply Proposition
4.10[ to give D¥u € HY(U’, 1) and

Cl(D];u,'l)) = (D]:;fa U)L2(U’,m)7 Vv € H&(Q/7m)

We can now apply Theorem to the preceding variational equation to give D];u € H?(U,w)
and

| Dbl 2y < € (1DES 2wy + I DEull 207 ) )
where C = C(A, R, R1). But
1D ull 207wy < D50l 1 (0 0),
and by Proposition [£.10, we obtain

k
HD'QUHHl(U/,m) <C Z D% fll2 vy + lullL2viy |
j=0
where C'= C(A, k, Ry, Ry). Combining the preceding estimates completes the proof. O

4.3. Interior H? regularity for first-order derivatives orthogonal to the degenerate
boundary. We have the following analogue of Lemma Observe that if u € H?(0, ), then
the definition of H?(0, ) implies that y| D?u|, (1+y)|Du| € L?(€,w) and so y'/2|Duy|, (1+
y)/?u, € L?(0,yw) = L*(0, 1) and thus u, € H'(O, 1) by the definition of H'(0,w).

Lemma 4.12 (Variational equation for the derivative of a solution with respect to y). Let ¢ & H
be a domain, let f € L*(0,w), and suppose that u € H'(O,w) satisfies the variational equation

@11). 19
fe HY(O,w), ue H*O,w), and uz € L*(0,w,),

then uy obeys
al(uya U) = (fyaU)LQ(ﬁ,mﬂ - (BU7U)L2(ﬁ,m1)7 (419)
for all v € H (O, 101).

16While the right-hand side of the identity (4.19) is well-defined when f, € L?(&, 1), we appeal to an approx-
imation argument requiring at least f € H'(&,w) to justify integration by parts involving f.



34 P. FEEHAN AND C. POP

Proof. Again, suppose first that uw € C*°(€) and v € C§°(0). Then (yv), € C§°(L) too and

a(u, (yv)y) = (Au, (yv)y)r2(6w) (by Lemma

= _((Au)wyv)L?(ﬁ,m) — (Au, yU(IOgm)y)L2(ﬁ,m)

— —(Avtty, 50) 2 o) — (Bt y0) 120y — (At yo(log 1)) 2oy (by ()

= —(A1uy, v) 12(0,0,) — (BU,0) 12(0,0y) — (Au, yo(log)y) 20wy (by (A.6))

= —a1(uy, v) = (Bu,v) 12(pmy) — (Au, yo(log)y) 20w (by (7)),
where from we see that

(logw), = (B—-1)y~ ' —p on H.
As in the proof of Lemma for v € C§°(0), we may choose a subdomain ¢" € ¢ such that
suppv C 0" and 0,0 is C'-orthogonal to OH. If we now assume only that u € H?(0,w) and
ugr € L2(0,101), as in our hypotheses, there is a sequence {uy }neny C C°°(0") such that u, — u
in H2(0",1) as n — oo by Theorem [A.2] But then wuy, z» — Uz, weakly in L*(0",10;1) as n — o
since, for v € C§°(¢) with supp C 0’ and all n € N,
‘(un,m = Ugg, U)L2(ﬁ,m1)| = }(yun,m — YUz, U)LQ(ﬁ,m)|
< |ly(unza — um)HLQ(ﬁ,m)||U”L2(ﬁ,m)
< Jun — ull 20w 101 £2(610) -
Therefore, by approximation, the variational identity continues to hold for v € H?(&,w), which
ensures u; € L?(0,w) C L?(0, 1), and u,, € L?(0,101) (thus Bu € L*(0,w1)), that is,
a(u, (yv)y) = —a1(uy, v) — (Bu, v) 2(0,m,)
— (Au,yv(log)y) 126wy, Vv € C5°(0).
Also, since v € H?(0,w), then implies that Au = f a.e. on ¢ by Lemma Hence,
and the fact that f € H'(€,w) and thus fy € L?(0,w1) by hypothesis, yields
a(u, (yv)y) = (f, (Yv)y) r2(6 w)
= _(fyayv)ﬂ(ﬁ,m) - (f, yU(IOgm)y)Lz(ﬁ,m)
= —(fy: V)20 w1) — (fryv(logmw)y) 26wy, Vv € C5°(0),
while the preceding variational identity gives
a(u, (yv)y) = —a1(uy,v) = (B, v)r2(6,m,)
— (f,yo(logw)y) 120wy, Vv € Cg°(0).

Combining these variational identities yields (4.19), for all v € C§°(&), and hence the variational
identity holds for all v € H} (&, w). O

Proposition 4.13 (Interior H? regularity for a derivative of a solution with respect to y). Let
R < Ry be positive constants. Then there is a positive constant, C = C(A, R, Ry), such that the
following holds. Let ¢ € H be a domain and let U C V be as in , with V. C 0. Suppose
that f € L*(0,w) and uw € H'(O,w) is a solution to the variational equation ([2.11). If

FEW(Viw), ueH V,w), and u, € H'(V,w),
then u, € H*(U, 1) and

luyll g2 mr) < C (Ifllwrzw) + lullL2vmw)) - (4.20)
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Proof. The argument is similar to the proof of Proposition[4.11] except that the appeal to Proposi-
tion [4.9]is replaced by an appeal to Lemma[4.12]and we need to keep track of the different Sobolev
weights which now arise. Notice that u € H'(&,w) by hypothesis, and so y/?u, € L*(V,w) or
equivalently u, € L?(V,11). Moreover, f € H'(V,w), since f € W12(V, 1) by hypothesis. Also,
u, € H'(V,w) by hypothesis, and so Yy 2y, € L?(V,w) or, equivalently, u,, € L?(V, 7). Fi-
nally, the hypothesis u € H?(&,w) implies u, € H*(V, 7). Therefore, Lemma with V in
place of O, gives

al(uyav) = (fy7U)L2(V,m1) — (Bu, U)LQ(V,ml)a Vo € H&(K,ml)-

Choose an auxiliary half-ball, U’ as in (4.17)), with U" = BEI(ZO) and U c U’ C V, and fix
Ry = (R+ Rp)/2. We can apply Theorem to the preceding equation in place of (2.11)) to
deduce that u, € H*(U,w1) and

uyll 2y < C (I1fy = Bull L2 or) + 1yl 207 01)) »
<C (nyHL?(U/,ml) + vzl 2 1) + Uzl 2207 1) + HuyHLZ(U’,ml)) ;
where C' = C(A, R, R;). But
I1Dul| L2 1) < Ul 520 1) < Cllull g2 ),

where the first inequality follows from (3.9 and the second from (4.10)), with C' = C(R;). By
Theorem since u obeys (2.11]), we obtain

lull 27 ) < C (1f lL2(via) + Nl L20v0)) 5

where C' = C(A, Ry, Ry). Finally,

HUMHH(U’,ml) < HU:BHHQ(U’,ml) < CH“IHH?(U’,m)a
and applying Proposition |4.11] we obtain

el 2@ w) < C (el L2vim) + 1 L2(vio) + 6l 2(vio)) -
Combining the preceding estimates gives
luyll 2wy < C (Ifyll L2 mn) + 1 f2llLzovw) + 11 L20v) + [l L20vm))

<C (ny||L2(V,m) +fell 2wy + 1 f L2 (vi) + ||U”L2(v,m)) )

and this completes the proof. ([

4.4. Interior #° regularity. By combining Propositions and we obtain

Theorem 4.14 (Interior 3 regularity). Let R < Ry be positive constants. Then there is a
positive constant, C = C(A, R, Ry), such that the following holds. Let ¢ € H be a domain and
let U CV be as in [1.17), with V C 0. Suppose that f € L*(0,w) and that u € H'(O,w) is a
solution to the variational equation . If

fe W (V,w),
then v € #3(U,w) and

lull sy < C (Ifllwrzew) + el L2vmw)) - (4.21)
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Proof. Since f € L?(0, ), Theorem implies that v € H?(V, ). Choose an auxiliary half-
ball, U" as in ([£.17)), with U’ = BEI(ZO) and U Cc U C V, and fix Ry = (R + Ro)/2. By
hypothesis, we have f € W2(V,w) and so Proposition yields u, € H?(U’,w) and
HyuﬂcmHL2(U’,m) + HyummyHN(U’,m) + (1 + y)umHB(U’,m) +[1(1+ y)“ﬂ:y”B(U’,m)
< Juzll 207 )
< C (Ifell 2y + 1f Il 2vim) + lull L2vw)) -
Because f € WH2(U’,w) by hypothesis, and v € H?(U’,w), and u, € H'(U’,w) (since u, €
H?(U', 1)), then Propositionm gives u, € H(U, 1) and
lyuyyyll 2@y + 111+ Y)uyyll 22 0001)
< luyll 2 w:)
< C(IDfll2vm) + 1l L2viy + lull L2ve)) -
Because u € H?(V,w) by hypothesis, we obtain u € #3(U, w) from Definition since

[[u] ,Q;fS(U,m) = HyumwwH%Z(U,m) + HyumyH%%U,m) + ”yuyyyH%%U,ml)
+ 111+ 9)taa T2 ) + 1+ 9)tiay | 2r) + 1+ 1)ty 1721110y
1+ el Ze ) + 11+ 9)uy ey + 10+ 9) 2l @),
and hence

||U”3f3(U,m) < ||yua:m||%2(U,m) + ||Z/Umy||%2(U,m) + Hyuyyy”%%aml)
I+ Y)uaallT2 ) + 10+ P uaylFomw + 10+ ugyllFe@p) — (4.22)
+ HuH%{?(U,m)'
Since u obeys ([2.11)), Theorem yields
lull r2 vy < C (1flL2vmy + el L2vie)) 5
and combining the preceding estimates gives (4.21]). O
4.5. Interior #*+2 regularity. We can iterate the preceding arguments, used to establish
u € 3 (U,w) given u € H?(V, 1) and additional hypotheses on f, to give higher-order Sobolev

regularity, where U C V are as in (4.17)) and V' C &. We begin with the following combined
generalization of Lemmas and [£.12]

Proposition 4.15 (Variational equation for higher-order derivatives of a solution with respect
to x and y). Let € € H be a domain with finite heighﬂ let k> 1 and 0 < m < k be integers,
let f € L?(0,w), and suppose that u € H' (O, w) satisfies the variational equation (2.11)). Iﬂ

fewhr2(0,w), ue#*(0,w), and DFuec HY(O,w) (m=0,1),
then D’;*mD;"u € H'(0,w) obeys
(DDl u, v) = (DEDI f,0) 12(0 1wy — M(BDE DI, 0) 1206 10,0 (4.23)
for allv € H(O,w,,).
17Propositionsh0uld, of course, hold without a hypothesis that & has finite height, but its already technical

proof is simpler with this hypothesis included and we shall only apply the result to domains of finite height.
18The need for the auxiliary condition, D¥u € H'(€,w), when m = 0,1 is explained in Appendix
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Remark 4.16 (Need for the auxiliary regularity condition when m = 0, 1). The role of the auxiliary
regularity condition, Dfu € H'(€, ), when m = 0 or 1 is explained in Appendix

Proof of Proposition[{.15 Lemmaimplies that holds when m = 0 and any k > 1, while
Lemma gives the conclusion when k = m = 1. So we may assume without loss of generality
that kK > 2 and m > 1 in our proof of Proposition Therefore, to establish , it suffices
to consider the inductive step (k,m — 1) = (k,m) (one extra derivative with respect to y),
assuming holds with m replaced by m — 1. The argument for this inductive step follows

the pattern of proof of Lemma )
As usual, suppose first that u € C*°(&) and v € C§°(€). Then (yv), € C5°(0) too and

a1 (DY Dy, (yo),y)
= (Am_lD];*mD;nflu, (yv)y)Lz(@mm_l) (by Lemma [A.3)
= —((Am 1 DY Dy )y, y0) 12(6 g0, y) — (Am—1 D5 Dy u, yo(log 10)y) 12(6 0 y)
= —(AmDi;_mDZLU,yv)L?(ﬁ,mm,l) - (BD’;_mD;n_lw YV) 12(6 rom_1)
- (Amle];_mD;n_lu,yv(logm)y)[lg(@mm_l) (by )v
that is, by Lemma and (4.6)),

am,l(Dl;_mD;”_lu, (yv)y) = fam(D’;_mD;nu, v) — (BDI;_mD;”_lu,v)Lz(@mm)
- (Am—lDﬁimD;niluayU(IOgm)y)LQ(ﬁ,mm_1)7 (4.24)
Yv e C5°(0).

We next establish the

Claim 4.17. The identity (#.24) continues to hold when the requirement u € C*(0) is relaved
to u € (0, w) together with, when m = 1, Dy € L2(0,wy).

Proof. The terms in the right and left-hand sides of the identity are well-defined when
Dy DIty € HY(O,wm—1), Dy "Dj'ue H' (O, wn),
Dytt=mpm=ly, DEFPm DRy € L0, w,y),
Dy Dl € H* (0, 10p,-1).

We consider each of the five preceding terms in turn. First, according to Definition we have
that u € %10, 1) implies

L2 ﬁ7 mm—?)a m 2 3)
L?*(0,w), m=1,2,

(

(

(ﬁ7 mm—?)a m > 3)
L?*(0,w), m=1,2,

(

(

L2 ﬁ7 mm—l)a m 2 2)
L?*(0,w), m=1.

Since L?(0, 10, 2) C L?*(0,1,,_1) (any m > 2) and L?(0,w) C L?(0,10,,_1) (any m > 1), then

DE=mpm=ly, y2pktimmpm=ly - yl2pEkmpmy e LX(0,wm-1), 1<m <k,
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and the definition (2.2) of H (O, 1,,_1) gives
uwe A (0, w) = Dy "Dy lue HY(O,wp1), 1<m<k.

Second, according to Definition we see u € (0, w) implies

that is,

D’;_mD;”u e L0, wp_1), m>1,

L*(0,w,,), m >3,
L*(0,w3), m=1,2,

DymDy € L0, wmy), m > 1.

DD € {

Therefore, using L*(&,w,,—1) C L?(0,1,,) (any m > 1), we obtain
DE=mpmy,  yt/2pktimmpmy, -yl 2pkempmily € L2(0,v,,), 1< m <k,
and the definition of HY(0,1,,) gives
uwe A (0, w) = Dy "Di'ue H(O,wn), 1<m<k.
Third, we have seen that u € J#**1(0, 1) implies

LQ(ﬁa mm*Q)a m >3,

Dk+1—mDm—lu c
’ Y L*(0,w), m=1,2,

and so, using L?(0,1w,, o) C L?*(0,,,) (any m > 2), we obtain

DyttmprTly € LX(0, ), 1<m<k.
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For the fifth term, D’;*mD;’%lu (we shall consider the fourth term last), observe that u €
HF( 0, vo) implies

ﬁa mm72), m Z 37
L2(0,w), m=1,2.

LQ(@) 1o 73) m >4
Dk+27mDm71 c s t¥m ) = =
V% v S 120, w), m=1,2,3,
L*(0,w,,2), m>3
DkJrlmem € s Wm ) = 9y
V5% y L2(0, ), m=1,2,
L*(O,0,-1), m>2
Dkmeerl c s WUm ) = 4y
PPy R 2o ), m=1,
DkJrlmemflu e LQ(ﬁa mm*2), m > 3,
v Y L?(0,w), m=1,2,
L*(O,0,-1), m>2
Dk mDm c ) m 9 - 4y
B {L2(ﬁ’,m), m=1,
(
(

Hence, from the definition (3.9) of H?(&,w,,_1), we see that
DDy tu € H* (O, wm—1), 1<m<k.

Finally, considering the fourth termﬂ observe that for each v € C§°(€), we may choose a
subdomain ¢’ € € such that suppv C ¢ and 0,0’ is C'-orthogonal to OH in the sense of
Definition According to Theorem m there is a sequence {u,}neny € C°(&") such that
Uy, — u in S50 1) as n — oo and hence, for each v € C§°(0) with suppv C &', we have

(D’;+2*mD;’%1un,v)Lz(@mm) — (D];Jr%mD;”*lu,v)Lz(@mm) as n — 0o,
since, for all n € N,
(DA D (= 10),0) 2|
= | DE D (= ), 0) 20|

<y DY Dy (un — u)ll r2(6,m) 1011 22610

< Cllun — ull s+ (om) vl L2(0,0)5
where C' = C(height(¢)), noting that u € 2%+ (£, w) implies, by Definition

L2<ﬁ, mm_g), m > 4,

Dk—i—?—mDm—lu c
Vo y 12(6,w), m=1,2,3,

1944 explained in Appendix it is only in the case m = 1 that D';+2_mD;n_lu € L*(0,w,,) is not implied by
u € A0, ) and this case is explicitly covered by the additional hypothesis, D¥u € H' (&, ), which ensures,
by definition ([2.2)) of H'(&,w), that y/2DrE 1y e L?(0,w) or, equivalently, DXy € L?(0, ;).
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and, for C' = C(height(0)),
ly™ DEF2=m DI (wyy — )| 2600y = P EDETEE DI (wy — )| 1206 10 s)
< ClyDs > Dy ™ un = w)ll 2 (600 )
< Cllun — ul o)y, ™ =4,
ly™ D52 Dy — )| 2oy = Iy VDD (= 1) 220 )
< lyDE2 D (g — )| 126 )
< Cllun — ullyprii o)y, m=1,2,3.

Therefore, by approximation, the identity (4.24) continues to hold for v € J#*+1(£0,w) and,
when m = 1, that D51y € L?(0,w1). This completes the proof of Claim O

By induction on m, the identity (4.23)) holds for (k — 1,m — 1) in place of (k,m), and so for
all v € C§°(0) and thus (yv), € C§°(C), we have

-1 (Dy "Dy, (yo),y)
= (D" Dy (Y0)y) 12 (60 1) — (1= 1) (BDE" Dy, (y0)y) 12(6 0,0 1)

Therefore, integrating by parts with respect to y on the right-hand side of the preceding identity
and applying (4.6 yields

a1 (D" Dy, (yo),y)

= —(DE"DI f,0) 12(6.0m) + (M — 1)(BDE DI, v) 1206 10,

— (Dﬁme;n*lf, yo(logw)y)12(6 1w, 1) + (M — 1)(BD’£7mD;”72u, yv(logw)y) 12(6 10 1)
Yv e C3°(0).
But D’;””D;”flf € L*(0,w,,_1), since f € W*2(0,w) hypothesis, and Au = f a.e. on & yields
Dyl f = DD Au ae. on O
= Am,lDﬁ_mD;n_lu + (m — 1)BD§_mD;n_2u a.e. on 0 (by (4.4)),
noting that v € #*+(&,w) by hypothesis and so (by an analysis very similar to that in the
proof of Claim ,
A1 DE"mDI "y, BDETDT 2y € L0, 0,,-1).
Substituting this identity for D];*mDZ”‘*l f into the preceding variational equation yields
a1 (D" Dy, (yo),)
= —(DS" Dy f,0) 126 w0,y + (M= 1)(BDE "Dy, 0) 12610, (4.25)
— (Am_lD’;_mD;n_l’u,, y’U(lOg m)y)L2(ﬁ7mm_1), Yov € Cgo(é)

Combining the variational equations (4.24) and (4.25) yields

(D~ D, 0) = (DET DI £,0) 120 sy — m(BDE DI, 0) 2, v € CE(O),
and hence ([4.23)) holds for all v € HZ (&, w). This completes the proof of Proposition m O

We now show that D’;j_nglu € H?(U,1,,), where U € O is as in ([4.17), for any k& > 1 and
0 < m < k, and provide estimates for these derivatives analogous to those in Propositions
and Propositions
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Proposition 4.18 (Interior H? regularity for higher-order derivatives of a solution with respect
to x and y). Let R < Ry be positive constants and let k > 1 and 0 < m < k be integers. Then
there is a positive constant, C = C(A, k,m, R, Ry), such that the following holds. Let ¢ € H be a
domain and let U C V be as in (L.17)), with V C 0. Suppose that f € L*(0,w) andu € H' (0, w)
1s a solution to the variational equation . If

fewr2(V,w) and we H*(V,w),
then
Dy~ D € H2(U, o),
and
IDE=" Dyl 2030, < € (I1F lwkaqvamy + Il 20y ) - (4.26)

Proof. Proposition yields the conclusion for any k > 1, when m = 0, while Proposition |4.13
gives the conclusion when k£ = m = 1. Therefore, we may assume that £ > 2 and m > 1.
By Proposition we see that D’;_mDZ“u € HY(0,w) obeys (4.23), that is

U (DA D", v) = (DEDI f,0) 12(v10,) — M(BDE ™ DI, 0) oy
for all v € H}(V, w,,), provided (in addition to f € WH2(V, w))

u € ,%”kﬂ(v,m),
DFu e HY(0,w) when m =0, 1.

The condition D¥u € H' (0, ) follows from Proposition since f € W*2(V, 1) by hypothesis.

Thus, it remains to verify that v € s#*T1(V,w) and justify this application of Proposition
4.15] noting that, by induction on k, we may assume Proposition holds for k replaced by
k — 1 and so we may assume u € J#*(V,w).

Claim 4.19. u € STV, w), for k > 2.
Proof. According to (4.11)), we have

k k k—
Hv”ifiﬁ-l(U,m) < Hny—i_luH%Q(U,m) + HnyDyuH%Q(U,m) + llyDg 1D5“H%Z(U7m)
k—1
+ Z ||yD§_1_mD$+2U||%2(U,mm)

m=1

I+ y) D3l Famy + (1 + 9) Dy Dyl T
k-1

+ Z (1 + y)Dg_l_mD;nHUH%%U,mm) + HUH?;f’“(U,m)’

m=1

and so we may conclude that u € #*+1(U, ) if the terms on the right hand side are finite.
By induction on k, Proposition m gives D';_l_mD’J“u € H*(U,w,,), for 0 <m <k — 1, and

DS Dl g2 (1740, < C (HfHWk*lv?(V,m) + ||u”L2(V,m)> ,
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where C' = C(A, k,m, R, Ry). The preceding estimate yields
HyDifHUH%Q(U,m) + HyDIQny“HQH(am) + HyDiflpzuH%Q(U,m)

k—1
+ D Dy Dy Rl )
m=1
+ 11+ y) Diul T2y + 11+ 9) DS Dyul 72 )
k—1
+ > 1+ Dy "D 72 o
m=1

2
< C (I lwravm + lullzvm))

Combining the preceding estimates yields u € s#*t1(U,w), for k > 2, and completes the proof
of Claim F.19] O

We now proceed to verify the estimate (4.26[). Because D’;*mD;" f € L?(V,w,,) by hypothesis,
we can apply Theorem to (4.23) and conclude that D’;_mD;"u € H*(U,w,,) and
DY Dy ull g2 (1740, < C (HD"IzimDnyHLQ(U’,mm) + DS DI | Lo 7 4o,
+ 1DE2 D | a1+ DS Dyl 200, )

where U’ is as in (4.17), with U’ = Bgl(z()) and U C U C V and Ry = (R + Ro)/2, and
C=C(AR,Ry).
We now estimate the terms on the right-hand side of the preceding inequality. Observe that

HD]:;H*mDymAUHH(U',mm) < ||D’;7mDZFlU”H2(U',mm) < CHDimeqT*lUHH2(U/,mm,1)7

where the first inequality follows from (3.9) and the second from (4.10)), with C = C(R;). By
induction on k and m, we may assume that Proposition [£.18 holds for k£ — 1 in place of k and

m — 1 in place of m and so D’;_mDZ”L_lu = D’;_l_(m_l)D;”_lu € H*(U',w,,_1) with
k— _
IDE" Dy ull 20wy < C (1 lwiroqvm) + lllizvm )
where C'= C(A, k, Ry, Ro). Similarly, observe that
k— k— - k— -
1D Diul| 2 (ur oy < 1D D ull 217 10,0y < CIIDE ™ DMl 217 1oy, 1)
where the last term is estimated above. Finally, we notice that
D2 Dyl L2 oy < DS Dy ull 2o,y < CIDET DY ull 2 10, 1)-

where C' = C(R;). For a given k > 2, we may assume by induction on m that Proposition
holds for m — 1 in place of m and so

D’;_(m_l)D;"_lu = D];Jrl_mD;T_lu S H2(U,, mm—1)7

with
IDE =" DNl a1y < C (I llwiaqvmy + Nl 2vm) )
where C' = C(A, k,m, Ry, Ry). Combining the preceding estimates gives (|4.26)). O

We can now combine our results for higher-order derivatives with respect to x and y to prove
the extension, Theorem of Theorem from the case k =1 to k > 1.
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Proof of Theorem[1.9. When k = 0, the conclusion is given by Theorem [3.16] while if k = 1, the
conclusion follows from Theorem so we may assume that k£ > 2. According to (4.11)), we
have

HW@%H(U@) < H?JDI:EHUH%Q(U@) + HyDlanglDyuHQLZ(Um) + H?JD];D;%UH%?(U@)

k
k—
+ 2 D" Dyl g,

m=1

I+ ) Dyl Lo ) + 11+ 9) D DyullEa 740

k
31+ 9D DI e

m=1
+ ||UH_2;;{%+1(U,m):

and so we may conclude that v € s#*T2(U, 1) if the terms on the right hand side are finite.
By induction on k, we may assume that Theorem holds for k£ — 1 in place of k£ and so
u € (U, 1) and

lullserswmy < € (Iflwisaqvm + lulzzvm)) -
Moreover, Proposition gives D’;_mD?’Jnu € H*(U,w,,), for 0 < m < k, and
IDE=" Dyl 200, < C (I lwkaqvamy + Il 2y )
where C' = C(A, k,m, R, Ry). The preceding estimate yields

k k k
‘|yDa:+2uH%2(U,m) + ‘|yD;t+1Dyu||%2(U7m) + ||yD$DZu||%2(U,m)

k
+ 3 My D Dyl 10
m=1
+ 1L+ 9) D5 ullZ2 ) + 11+ 9) DEDyul 22 )
k
+ ) A+ ) Dy Dyl o
m=1
2
< C (I e + lullz2vm)
Combining the preceding estimates yields u € #*T2(U, 1) and (1.5) for k& > 2. d

Next, we have

Proof of Theorem[1.3 For any z; € O, there is a constant Ry > 0 and a ball Bg,(z1) such that
Bpg,(z1) € € and [18, Theorem 8.10] implies that u € Wk+272(BR0/2(21)) and

[ullwis2z(By p)) < C (Hf”WkaQ(BRO(zl)) + HUHL2(BRO(z1))> ; (4.27)

for some positive constant, C = C(A, k, Ry). If z9p € 0y, there is a constant Ry > 0 such
that H N Bg,(20) C O (since 0y is defined to be the interior of 0H N 00) and Theorem
implies that u € 57 k+2’2(BEO /2(z0),m) and that inequality (1.5) holds. Hence, by combining

these observations, u € J£*%(0, ).

loc
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Recalling that dist(00”,00") > di > 0 by hypothesis, we choose Ry = di/2. There are
sequences of points, {20} C y0”" with HN Bg,(z0,;) C 0" and {z1 ;} C 0’ with Bg,(z1;) € 0",
such that

0 c UB;Z_O/Z(ZOvi) U BRo/Q(zLj) co”.
1:7j
The preceding covering of &’ can be chosen to be uniformly locally finite (for example, by locating

the ball centers on a rectangular grid with square cells of width dy) with constanﬂ N =4, in
the sense that each open ball in the covering intersects at most 4 other balls in the covering.

The definition (2.5)) of the weight, tv, and the definitions (2.1]), ([4.§]), and (#.12) of the L?(&, tv),
HF2(0,w), and WF2(0, 1) norms, respectively, and the estimate ([4.27)) combine to givdﬂ

T
[ull sers2 (B (a1 5)0) < Cc 2m’]l||UHW'v+272(330/2(,zl,j))
T
< Ce 21714l (HfHWk’Q(BRO(Zl,j)) + ||UHL2(BR0(21,J'))> (by (4.27))
Clgs | Ll s
< Ce zle1il e el <||f||Wk’2(BRO(Zl,j)7m) + HuHLQ(BRO(zLj),m)) ,

where 21 j = (z1,5,y1,j) and C = C(A, d1, k, A), recalling that height(&”) < A by hypothesis, that
is

lull vz (B o (or, ) m0) < € <”fHWk’2(BRO(zLj),m) + HUHL‘Z(BRO(ZLJ-)W)) : (4.28)
Therefore, we obtain the inequality (1.6 from (1.5) and (4.28]) and the uniform local finiteness
of the open covering of . O

Similarly, we obtain

Proof of Theorem [1.5. Uniqueness of a solution u € H'(&,w) to the variational inequality
with boundary condition, u — g € HZ (&, 1) defined by g € H(0, ), follows from [T, Theorem
8.15], noting that f € L>(&,w) by hypothesis and that L> (&) C L?(0,w) since vol(&, ) < oo,
while (1 +y)g € W2%°(0) implies g € H'(0,w). When g = 0 on 0, existence of a solution
u € H'(O,w) to the variational inequality follows from [3, Theorem 3.16], again noting
that f € L°°(0) by hypothesis. For a non-zero g with (1+y)g € W2>(&), we have g € H*(0,w)
and

a(g,v) = (Ag, V) 2(6 ), YV E H} (0, W),
by Lemma By replacing u € HY(0,w) with @ := u — g € H}(0,w) and noting that
f:=f— Ag € L>(0), existence of a solution @ € H}(&,w) to the variational inequality,

Cl(’l], U) = (fv U)L2(@’,m)7 Vo € H(% (ﬁvm)v

again follows from [3, Theorem 3.16]. Therefore, we obtain existence of a solution u € H! (&, w)
to the variational inequality (2.11)) with boundary condition, u — g € H}(&, ). The facts that
u € j’ﬁ(’fj 2(0) and u obeys (1.6) follow from Theorem O

20In higher dimensions, the constant N(d) depends on the dimension, d, where & C H and H = R%"! x R,
215ee the proof of Proposition for a similar argument with additional details.
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5. HIGHER-ORDER HOLDER REGULARITY FOR SOLUTIONS TO THE VARIATIONAL EQUATION

In this section, we extend the C¢(&)-regularity results from [12] for solutions, u € H(&, 1),
to the variational equation to C’f’a(ﬁ)—regularity, for any integer k > 1. We begin in
by proving C&(0)-regularity (Theorem for the gradient of a solution, u € H'(&,w),
to the variational equation (2.11)). In §5.2] we establish C$(&)-regularity (Proposition for
higher-order derivatives of a solution, v € H'(&,w), concluding with a proof of one of our main
results, Theorem giving C&* (O)-regularity of a solution, u € H(&,w). We conclude in
with proofs of our remaining principal results, namely, Corollary Theorem Corollary
Theorem [I.11} and Corollaries and

5.1. Holder regularity for first-order derivatives of solutions to the variational equa-
tion. We begin with

Proposition 5.1 (Interior C¢ Hélder continuity of u,, for a solution u to the variational equation).
Let p > max{4,2 + 8} and let Ry be a positive constant. Then there are positive constants,
Ry = Ri(Ry) < Ry, and C = C(A,p,Ry), and o = a(A,p, Ry) € (0,1) such that the following
holds. Let ¢ C H be a domain. If f € L*(0,w), and v € H'(O,w) satisfies the variational
equation , and zg € OyO is such that

BRO(ZO) NHc o,

and
fo € LP(Bf, (20),5" 1),
then
ug € CF(B, (20)),
and

luzllee 54 o)) < (”fw’m(B;O(zO),yﬂ—l)*”f”m(B;O(zO),yﬁ—l) o
5.1

ol e )

Proof. By hypothesis, f, € LQ(BE0 (20),1) since p > 2 and so Proposition implies that
Uy € Hl(B;g2 (20),10), for any Re = Ra2(Ryp), to be determined, in the range 0 < Rz < Ry and uy,
obeys

a(um, U) = (f.’l?) U)LZ(BEQ(ZO)JU)’ \V/’U S H&(BEQ (ZO), m),
and
lallzrr (5, (z)0) < € (IIfoILQ(Bgo(zO»m) 1 25, oy T ”“”LQ(Bgo(zwm) :
The conclusion u, € C?(Bgl(zo)) and estimate, with C = C(A4,p, Ry), and o = a(A,p, Ry) €
(07 1)7 and Ry = Rl(RQ) < R?a

o (57, oy < € <HszLp<B§2(zo>,y51) + ”“z”L%B;Q(m),yBl)) ’
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follow by applying Theorem m to the variational equation for u, on BEQ (z0). By definition

(2.5)) of o, we have

1/2
HumH 2(Bt (20)y8-1) — / ugz yﬁ 1d$dy
L ( RQ( 0),Y ) BEO(ZO)

1/2
3/ TG0t o (ro— Re P+ 3k ( / W2y e VIR gy dy>
B

7o (20)

IN

e%y 1+(|lzo|+R2)2+1

IN

pR: ||uxHH1(B§2(zo),m)

1
< CeQ’Y|CIJ0| HU$HH1(B§2(ZO)JU)’

for C = C(A, Rz). Finally, we note that

1/2
0 B}, (20)

IN

1/2
e’%“f\/1+min{(wo+R2)2:(mO*RQ)Q} (/ fg yﬁil dx dy)
Bf, (20)
_1 xo|— 2
< Ce 37 1+(lwo|—R2) foHLp(B;th(ZOMB—l)
ol
S Ce 2'Y| OIHfZ‘HLP(BEO(ZO)vyﬁ_l),

where C' = C(p, Ry, R2,3), and similarly for the terms HfHL2(B§ (o)) A0 Hu||L2(B$ (20)10) "
0 0

We may choose R2 = Ry/2 and combining the preceding inequalities yields (5.1]), with C =
C(A7 b, RO) U

Next, we have

Proposition 5.2 (Interior C' Holder continuity of u,, for a solution u to the variational equation).
Let p > max{4,3 + S} and let Ry be a positive constant. Then there are positive constants,
R; = R1(Ry) < Ry, and C = C(A,p, Ry), and o = a(A,p, Ry) € (0,1) such that the following
holds. Let ¢ C H be a domain. If f € L*(0,w), and w € H'(O,w) satisfies the variational
equation , and zg € OO is such that

BRO(ZO) NHcC o,

and f obeys
for fys foa € LP(Bf (20),5°71), (5.2)
then
uy € CJ(B, (20)),
and

lylleg 54, w0 = € <||fm||Lp<B;sO<zo>,y61> e (s, o)

(5:3)
ol e )
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Proof. Since p > 2 and so f € Wl’Z(BEO(zO),yﬁfl) = Wl’Q(BEO(zo),m) by hypothesis, The-
orem ensures that u € %3(BEO /Q(zo),m). By Definition we therefore have u €
H2(B§0/2(ZO)’ w) and Uz, € LQ(B§0/2(ZQ), 1) and so Lemma implies that

Uy € Hl(BEO/Q(zo),ml),
and u, obeys the variational equation,

We note that the preceding variational equation continues to hold on BE (z0), for any Rg in
the range 0 < Ry < Rp/2 and still to be determined. To apply Theorem to the preceding
variational equation and conclude that u, € C;"(B;z‘l(zo)) for some Ry = R1(R2) < Rz and, for a
positive constant C' = C(A4, p, Ra),

H“yHCg(ngl(zo)) <C <||fy||LP(BE2(z0),yﬁ) + ||Ux”Lp(B§2(zo),yﬂ) + ||ux.Z’HLP(B§2(ZO)7yﬂ)
(5.4)

ol o )

we need f, — Bu to obey the integrability condition (2.13)) obeyed by f, with 8+ 1 and Rj in
place of 8 and Ry, respectively. In other words, u must obey

Ug, Ugz € Lp(B;% (20)7yﬁ)7 (55)

while our hypothesis (5.2) on f ensures f, € Lp(B;{F2 (20),y°71) C Lp(BEQ(zO),yB). For the
condition (5.5) on w, it is enough to show that uy, uzs € L(B} (20))-
Since fy, fzz € LQ(BEO(ZO),yB*I) by hypothesis, Proposition (with & = 1,2) implies that
Uy, Uy € H&(BEOQ(ZO)’ w) and that they obey
a(ug,v) = (fz,U)L2(B§0/2(zO)7m)a

a(um;, ’U) = (f:CCCv ’U)LQ(B;;O/Q(ZO)JU), VU E H& (EEO/Q(ZO)’ m)

Also, because fy, for € LP (BEO(ZO), y?~1) by hypothesis, we can apply Theorem to the pre-
ceding variational equations to give an R3 = R3(Ry) < Ry/2 such that uy, uz, € L‘X’(BJR%(ZO))
and

lzll oo B () < € (IIfxllmB;O/Q(zo),yﬁl) + |“$”L2(B;O/Q<zo>,yﬁl>> ) (5.6)

HUm||L°°(B}§3(z0)) S C (foxHLp(B;O/Q(ZO),yﬂ1) + ‘uxxHLQ(BgO/Q(ZO),yﬁl)) . (57)

We now choose Ry = R3 and observe that condition (5.5 holds and the estimate ([5.4)) is justified
with

Hu%HLP(BES(Zo),yﬁ—l) < CHumHLOO(BES(Zo))’ (5.8)

5.8

teallo(s (o)yo—1) < Clltwell oo sy (o))
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where C = C(8,p,R3) = (fng (zo)y[g*1 dz dy)'/?. The definition (&.8) of #3(&,w) and the
definition ([2.5)) of v imply that ’

sz oo T Mellpasy eoygrn) + teelliaay oo

< Cezl®l (HuyHL?(B;

< Celu s 0

e+ Wl + Wl o)

0/2(20)7m)’

where C = C(A, Rp) and the factors, e%‘xo‘, arise just as in the proof of Proposition Thus,
by Theorem [£.14]

||uyHL2(BEO/2(Z0)7y/B_1) + ||ux”L2(B§0/2(ZO)7y'B_1) + HULL‘ZU||L2(B§0/2(Z0)7yﬁ—1)
X

< C€2|$0| <||f||W1’2(B§0(Z0),m) + HUHLZ(BEO(ZO),TU)> 5

< Cetlanle=3tol (| 1) +

= W12(B, (z0)57 ) L2(B, (20051 | 7

<C <HfHW1,p(B§O(z0),y5—1) + ‘UHL2(B§O(z0),y/3—1)> )

where C' = C(A, p, Ry)) and the factors, e~ 2170l arise just as in the proof of Proposition The

estimate (5.3)) is obtained by combining the preceding inequality with (5.4)), (5.6)), and (5.7)), and

53). O
We may combine Propositions and to give

Proposition 5.3 (Interior C Holder continuity of Du for a solution u to the variational equa-
tion). Let p > max{4,3+ (3} and let Ry be a positive constant. Then there are positive constants,
Ry = Ri(Ry) < Ry and C = C(A,p,Ry) and o = (A, p, Ry) € (0,1) such that the following
holds. Let ¢ C H be a domain. If f € L*(0,w) and u € H'(0,w) satisfies the variational
equation (2.11)), and zg € 0yO is such that
BRO(ZO) NHc o,

and f obeys (5.2)), then )

ur: Uy € Cg(BEI (Z(])),
and

1Pullce 57 oy <€ <||fm|!Lp<B§0<za>,yﬁ—l> 1 lwrr s, z0)w7-) 59
5.9

Il ) ) -

Proof. The conclusion ug, uy € C¢ (322_1 (z0)) and estimate ({5.9)) follow from Propositions [5.1|and

9.2 g
Finally, we may combine Theorems and and Proposition to give

Theorem 5.4 (Interior Ci** Hélder continuity for a solution u to the variational equation).

Let p > max{4,3 + 8} and let Ry be a positive constant. Then there are positive constants,
Ry = Ri1(Ry) < Ry and C = C(A,p, Ry) and o« = a(A,p, Ry) € (0,1) such that the following
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holds. Let ¢ C H be a domain. If f € L*(0,w), and u € H'(O,w) satisfies the variational
equation (2.11)), and zg € 00O is such that

BRO(ZO) NHcC o,
and f obeys (2.13)) and (5.2)), then

u € Cy* (B, (x0)),

and

||u||c§1a(1§§1(z())) <c <||fm”LP(B§O(z0),y31) + ||f||w1,p(3§0(zo)7y671)
(5.10)

ol e )

Proof. Since f, fz, fy € Lp(BEO(zo),yﬁ_l) - LZ(BEO(Z()),FD), Theorem implies that u €
,%”3(322 (20),m) for any 0 < Ry < Ry. By applying Theorem and Proposition with
Ry in place of Ry, we obtain u € C’i’a(Bgl(zo)) for some Ry < Rp and, say, Ry = Ryp/2. The

inequality (5.10)) is obtained by combining (2.24]) and (5.9). O

5.2. Holder regularity for higher-order derivatives of solutions to the variational equa-
tion. We first give an extension of Proposition [5.1] from the case k = 1 to arbitrary k > 1.

Proposition 5.5 (Interior C'¢ Hoélder continuity of higher-order derivatives with respect to x
for a solution to the variational equation). Let p > max{4,2 + 5}, let Ry be a positive constant,
and let k > 1 be an integer. Then there are positive constants, Ry = R1(Ry) < Ry, and C =
C(A,k,p,Ry), and o = (A, p, Ry) € (0,1) such that the following holds. Let ¢ S H be a domain.
If f € L?(0,w), and uw € H' (O, w) satisfies the variational equation [2.11]), and 2o € OoO is such
that
BRO(ZO) NHC o,
and
Dif e LP(Bf (20),4°7"), 1<j<k,
then
(an, Zf 20 = (:EO’O):
k
. )
IPzullee (5, oy = € Z% 1Dz fll o (5, oywo—) + Mull2 sy, oyary |- (5.11)
]:
Proof. The argument is similar to the proof of Proposition By hypothesis, D’ felL? (BEO (20),10),
1 < j <k, since p > 2 and so Proposition implies that D¥u € Hl(BEQ(zO),m), for any
Ry = Ra(Ry), to be determined, in the range 0 < Ry < Ry, and that D’;u obeys

a(DI;'U/7 'U) - (D];f’ ’U)LQ(BEQ (zo),m)’ VU E HS (EEZ (Z(]), m),
and, for C' = C(A, k, Ry),

k
. |
1Dzl 1 7, py < € | 2_IPE N2 ey iy + 1l i, o))
=0
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The conclusion D¥u C?(BEI(Z())) and estimate, with C' = C(A4,p, Roy), and a = a(A4,p, Ry) €
(0, 1), and Ry = Rl(Rg) < Ry (recall that Ry = RQ(R())),

k k k
||D$U||Cg(3;1(20)) < C (HszHLP(B;Q(zO)’yBl) + ”DmU”L2(BE2(zO)’y51)> y

follow by applying Theorem to the variational equation for D¥u on BEQ (20). As in the proof
of Proposition [5.1] we have
k 2 k
||Dxu||L2(B§2 (20),y5~1) < (Ce2 ol ||Dxu||L2(B§2 (20),0)

o/ k
< Cez'“”0'HDIUHH1<BE2(ZO),m>’

where C' = C(A, Ry). We may choose Ry = Ry/2 and observe that, by combining the preceding
inequalities, we obtain (5.11)), with C' = C(A, k, p, Ry), noting that the factor, e%lxo|7 cancels just
as in the proof of Proposition [5.1 O

The extension of Propositions and to the case of derivatives of the form D’:;_mDL”u
when 1 < m < k is best illustrated by an example when ¥ = 2 and m = 0,1,2. The case
k =2,m =0 is given by Proposition [5.5] so

2

”umHCg(Bgl(zo)) <C Z; ||Dg;~fHLp(B;0(ZO),yﬁfl) + ||“|‘L2(Bgo(zo),y/3*1)
]:

For k = 2,m = 1, the pattern of proof of Proposition shows that a CJ estimate of uyg,
requires an LP-bound on fiy, Uzz, and ug.,, thus an additional L*°-bound on ., and hence an
additional L? bound on f,;., to give

3

||Ua:y||cg(ggl (20)) <C <Zo ||D§,‘f”LP(BgO(ZO),yB*1) + ||fxyHLP(B$O(z0),y3*1)

g )

and thus the following will suffice,

cslleg s, o < € (Moo, anaomty * 1liacog, caraos ) -

For k = 2, m = 2, the pattern of proof of Proposition shows that a ¢ estimate of u,, requires
an LP-bound on fyy, Uzy, and uggy, thus L>°-bounds on u,, and .4y, hence additional LP bounds

on fJ?.Z‘y, fxajmx7 tO glve

4 2
gyl a7, o) < € z%”D%f”LP(B;O(zo),yﬁ1)+;‘|D;fy”w(3§0<zo>,yﬁ1)
Jj= i=

+ nyy”LP(BEO(zo),y5*1) + Hu||L2(B§0(zO)7yB1)> )

and thus the following will suffice,

gyl a5, o) < € (”f”WWB;O(zo),yﬂl) + ”“HL%B;O(zo),yBl)) :
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The preceding examples motivate the statement of the following combined extension of Proposi-

tions (.2l and £.5

Proposition 5.6 (Interior C'¢ Holder continuity of higher-order derivatives of a solution to the
variational equation). Let Ry be a positive constant, let m, k be integers with k > 1 and 0 < m < k,
and let p > max{4,2 +m + }. Then there are positive constants, Ry = Ri(m, Ry) < Ry, and
C =C(A k,m,p,Ry), and o = a(A, m,p, Ry) € (0,1) such that the following holds. Let ¢ € H
be a domain. If f € L*(0,w), and u € H'(O,w) satisfies the variational equation (2.11)), and
2o € Q9O 1is such that

BRO(ZO) NHcC o,

and

feWrmP(BY (29),577),
then

D" Ditu € C$ (B} (20)),
and

k—m mym
1Dz~ Dy u|’C?(B§1(Zo)) <C (Hf||wk+m,p(]3§0(zo)yﬁ—l) + ’UHL2(B§O(ZO),913—1)> : (5.12)

Proof. For arbitrary ¢ > 1 and f € WP (B;,g0 (20), 4 1), Proposition already implies that

4
1Dzl cg 5, oy < € (”f”ww(B;O(zoxyﬁ—w + ”“”LQ(BIEO(%)M*)) )

for some Ry = Ro(Ryp), and hence that holds when m = 0, so we may assume without loss
of generality that m > 1 in our proof of Proposition Therefore, to establish , it suffices
to consider the inductive step (k,m — 1) = (k,m) (one extra derivative with respect to y),
assuming

{—n yn
1D, Dy“”@g(ggz(zo)) <C (HfHWZ-H’hP(BEO(ZO)7y/3—1) + HU”L2(B§0(ZO)795—1)> , (5.13)
forall /> 1, allnsuchthat 0 <n<m-—1, and1<m <k,

where Ry = Ro(m — 1, Ry) (we point out the origin of the dependence on m further along in the
proof). The proof of this inductive step follows the pattern of proof of Proposition
By our hypotheses on f, Theorem [I.2] implies that

U € %k+2+m(31§2 (ZO)’m) - %k+3(BE2 (ZO)’m)

(since we assume m > 1 for the inductive step), for any Ry in the range 0 < R < Ry to be
determined, and that

||u||(yfk+3(3§2(z())’m) S C <”f”wk+1,2(3§0(20)7m) + Hu||L2(BIJ§O(z0),m)> . (5.14)

We have D’;_mD;”u € Hl(BEQ(zo),mm) by Definition of %k+3(BE2(ZO),m), since u €
%k%(BEQ (20), 1) implies

+
o 2 < <k
Dk+1=mpmy, D’;mD;"ue{ E {EE ; ;”1) —”I— ’
B, m =4,
L (%

DymD € LA(BY (20),0m), 1< m <k,
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and we have Diu € H' (B (20), ) by Proposition m Proposition m then ensures that
D];_mD;”u obeys the variational equation on BEQ (20),

am (D5~ Dy, v) = (D" Dy f,0) 23 () o)

k— -1
— m(BDZ mD:Ln U7U)L2(BE2(Z0),mm)’

for all v € H} (QEQ (20), 0y,). By hypothesis, D’;_ng‘f € Lp(B]%‘2 (20),y°+™=1) and provided we
also know BDE~™DI"~! € LP(Bj, (20),y ™), that is,

)
DDty e LP(BY, (z0),yP ), (5.15)
. (20),y

Dyt Dty € LP(BY (20),y"T™ ), 1<m <k,

we can apply Theorem to the variational equation for D’;_mD;”u and conclude that D’;_mD;’Jnu €
C;?‘(B;%‘l(zo)) for somg”™| R; = R1(Ry) obeying Ry < Ry, and

k— fo—
HDI mD;n“HCg(Bgl(zo)) <C (HDQE mD;anLP(B;Q(zO),yﬁer—l)

2
ktj— -
S IDET D g g (5.16)
=

k—
+ HDI mD;nuHLQ(BE2(Zo),yﬁ"'m_l)) 5 1 S m S k

It is important to note that the Holder exponent, «, in (5.16|) depends on the coefficients defining
the bilinear map, a,,, that is, on the coefficients of A,, and thus on the coefficients of A and on
m, the number of derivatives with respect to y, and this is why we write a = a(A, m,p, Rp) in

the statement of Proposition The integrability conditions ([5.15)) are implied by
Dyt D=ty € L®(BY (20)),

5.17
Dyt Dty € L®(BY (20)), 1<m <k (5:17)

Note that DEH=mpm—ly = py~""Ypm=ly and pkt2-mpm=ty = piH=m=Hpm—iy, anq
the properties (5.17)) hold by the inductive hypothesis ((5.13). Therefore, the inductive hypothesis
B13) gives

kt1— -1
1Dz Dyl oo, (a0

(5.18)
< € (Iflhwesm-ragag corai + s, onn) )
||D§+27mD;n*1u||Loo(B§2 (20))

(5.19)
< € (Uflwrsmaqa, orn-n * Nl s )

for 1 < m < k. Hence, the integrability conditions for the derivatives of u in ([5.15)) are satisfied
and the estimate ({5.16)) holds.

22The dependence on m appears in this step.
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Applying the Definition of %k+3(BE2(zo), w) and the L estimates (5.18) and (5.19) for
the derivatives of u, the inequality (5.16]) yields

k—
1Dz mDZIUHCg(BEI (20)) <C <HfHWk+m,p(B;gO(zo)7y61) + ||qufk+3(B§2(ZO)7m)> : (5.20)
Combining inequalities ([5.14]) and (5.20) completes the proof. O

Theorem [1.6] now follows easily, extending Theorem [5.4] from the case k = 1 to any k > 1.

Proof of Theorem[I.6. When k = 0 or 1, then the conclusion follows from Theorems [2.12] or
respectively, so we may assume that k£ > 2 and, by induction, that the conclusion holds for k£ — 1
in place of k. Since

_ k
HUHC?(}(Bgl(zo)) = ||D UHcgz(B;l(ZO)) + ||u||C§71’a(B§1(ZQ))’ (521)

by Definition it suffices to show that Dﬁ_mD;”u € C?(Bgl(ZO)), for 0 < m < k, but this
inclusion and estimate are given by Proposition [5.6 g

We may combine Theorem with standard results from [I8] for linear, second-order, elliptic
differential equations to give a weak version of Theorem which will, nonetheless, provide a
useful stepping stone to the proof of Theorem itself. Although their statements appear sim-
ilar, Proposition is nevertheless strictly weaker than Theorem despite the more relaxed
hypothesis on f because, in the former case, « = a(A4, dy, k,p) depends on the choice of precom-
pact subdomain, & € €, through the constant d; whereas in the latter case, « = a(A,k,p) is
independent of the choice of precompact subdomain, 0" € 0.

Proposition 5.7 (Interior Cche regularity on subdomains). Let k > 0 be an integer, let di < A
be positive constants, and let p > max{4,2 + k + S}. Then there are positive constants o =
a(A,dy, k,p) € (0,1) and C = C(A, k,dy, A, p) such that the following holds. If f € L*(0, ) and
u € H'(O,w) is a solution to the variational equation ([2.11), and f € Wﬁi’i’p(ﬁ, w), and 0" C O
is a subdomain such that 0" € O with 0" C (—A,A) x (0,A) and dist(0:0",0,0) > dy, then

ue Ch 0"y nCeo").

Moreover, u solves ([1.1)) on 6" and if 0" C 0" is a subdomain with ' € 0" and dist(0,0',0,0")
dy, then

v

lull g gy < € (1 ooy + lullz2gomm)) - (5.22)

Proof. Choose Ry = di/2 and let Ry = Ri(k,Rp) < Rp be defined by Theorem Since
0" C (=A,A) x (0,A) and the rectangle is covered by balls, Bg, (z;) C R?, with a finite sequence
of centers {z} C [-A, A] x [0,A] on rectangular grid with square cells of width R;. We may now
choose finite subsequences of points, {20} C {2} Ndy& and {21 ;} C {#} N O, such that

0" | Bf;, (204) U Br, (1),
i’j

where H N Bg,(20;) C € for all i and Bry(21;) € O for all j. Let a = a(A,k,p,Ry) =
a(A,dy, k,p) € (0,1) be the constant defined by Theorem
According to [I8, Theorem 9.19], for each > 0 and ball B, € & of radius r and integer k > 0,

we have u € WFt2P(B,), since f € I/Vlilz’p(ﬁ) by hypothesis and, in particular, f € I/Vlléf(ﬁ)
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By the Sobolev embedding [T, Theorem 5.4 (C')], since p > 2, there is a continuous embedding,
Wk+22(B,) « C*1(B,). Thus, u € C**(0) because, a fortiori,

ue C*Y(B,), VB,eo0. (5.23)
Moreover, letting B, /o C Bs,/4 C B, denote concentric balls,
lullorss s, ) < € (1 lwers, + lullzzs,) ) (5.24)
where C' = C(A, k,p,r), sincﬂ
||U”0k+1(Br/2) < CHU||W}C+2,;D(BT/2) (by p > 2 and [I, Theorem 5.4 (C')])
<C (Hf”Wk,p(Bgr/Ll) + ||UHLP(B3T/4)> (by [18, Theorems 9.11 & 9.19])
<C (||f||Wk,p(BBT/4) + |’U"W1,2(BST/4)) (by p > 2 and [I, Theorem 5.4 (B)])
<C (||f||Wk,p(BT) + Hu||L2(BT)> (by p > 2 and [I8, Exercise 8.2]).

The conclusion u € C¥*(£") N C (") now follows from Theorem

For the estimate of u over ' @ 0", observe that, since dist(010",0,0") > dy, the
closure ¢’ is covered by finitely many half-balls, BEO (204) with HLN Bg,(20:) € 0", and balls,
Bpr,(21,j) € 0", where the total number of balls and half-balls of radius Ry = R(d;) is determined
by di and A. We obtain by applying to each half-ball BEO (20,4) C O and applying
to each ball Bg,(21,;) € €, noting that, by definition of to,

\/ 2
£ lwewcs,y < €Y fllwrin s, ) (5.25)
for each ball B, € 0", together with || f|lyyx.0(p, w)y < | fllw2kp(e7 ). This completes the proof.
]

5.3. Proofs of Corollary Theorem Corollary Theorem [1.11], and Corol-
laries [1.15] and [1.16] We first have the easy

Proof of Corollary[I.7. For any zy € O, there is a constant Ry > 0 and a ball Br,(z0) such that
Bp,(20) C 0 and [18, Theorem 6.17] implies that u € C°°(Bg,/2(20)). If 20 € 0o, there is a
constant Ry > 0 such that H N Bg,(20) C ¢ and Theorem implies that there is a positive
constant Ry = Rj(k, Ry) < Rp such that u € Cf’o‘(B]i:l(zo)) for any integer £ > 1. Hence, by
combining these observations, u € C*(0). O

In order to prove Theorem and obtain u € CF "*(€) with an a priori interior estimate
on each pair of subdomains ¢’ C ¢” C € with ¢’ € 0" and 0" C (—A,A) x (0,A), we shall
need to examine u near the “corner points”, zg € dg& N 0,0, as well as u near “interior” points,
20 € 0p0, and u near points zgp € € away from Jy& (where classical results from [I8] apply).
Otherwise, as noted prior to the statement of Proposition we would not obtain a Holder
exponent, o € (0, 1), which is independent of &’ and 0"

Proof of Theorem[1.8 Choose Ry =1 and let Ry = Ry(k) < 1 and a = a(A, k,p) € (0,1) be the
constants defined by Theorem Since f € WFP(0) because, a fortiori, f € W2 T2P(g) by

hypothesis, we know from the proof of Proposition that v € C*+1(0) c C**(0) because of
(5.23) and that the estimate ([5.24) holds for any ball B, € 0.

23The estimate (5.24) also follows from [I8, Corollary 6.3 & Theorem 6.17).
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To complete the proof that u € cr “(0), it remains to check that for every point zg € 9y0,
there is an open ball B, (zp), for some r > 0, such that HN B,(29) € € and u € Cf’a(B:/Q(zo)),
with € (0,1) as fized at the beginning of the proof. According to Theorem for each point
29 € Op0 such that HN Bp,(20) C O, we have u € Cf’a(BEI(zo)).

It remains to consider points zp € Jp@ such that H N Bg,(20) ¢ O} in fact, our analysis of
this case is valid regardless of whether H N Bg,(20) C ¢ or HN Br,(20) ¢ ¢. Choose r > 0

small enough that » < Ry and HN B,(29) € €. Let ¢ € Cg°(H) be a cutoff function such that
0<(¢(<lonHand(¢=1on Bj/Q(zo) and supp ¢ C Bt (z0). To prove u € C’f’a(B:r/z(zo)), it
suffices to show that

D™D e CS(BY,

T/2(zo)), 0</l<k, 0<m<l{, (5.26)

and since the argument will be similar for any 0 < £ < k, it is enough to consider ¢ = k.
We have f € Wi’f(@) since, a fortiori, [ € W2kt2p (€) by hypothesis, and therefore u €

loc

HF2(BF (), ), by Theorem and so DE~"Diu € H' (B (20), twm) and DEu € H' (B} (2), ),
by Definition [4.3| of s#%+2(B (), w). Thus, Proposition implies that D’;_mD;”u obeys the
variational equation on B (2),

where
L k—m mym k—m ym—1
fomu == DETDIMf — mBDE™ DI,

Consequently, since supp( C &, Lemma implies that CD’;me;”u obeys the variational
equation on H,

A (CD5" Dy, v) = (Cfrmu + [A, DT Dy, v) 2w,y V0 € Ho (H, 1or).
Moreover, CD’;_’”D;"U € H'(H, ) and, provided
Cfremu + [A, D™ Dy u € LP(BY (20),5° ), (5.27)
noting that supp ¢ C B, (29) and 7 < Ry (in fact, r < Ry < Rp), Theorem will apply to give
(D " Dy'u € C{(B/ (20)),

where a was fixed at the beginning of the proof, and a positive constant, C' = C(A, k, p), noting
that Ry = 1 and supp ¢ C B, (20), such that

1Dz ™™ Dy ull g (5 (20
< C (I fimaull o () yo-1) + A IDE Dl 3 ) -y (5.28)
+ HCDi_szTU\|L2(Bi(zo),yﬁ*1)) '
We observe that
Hka,m,u‘|LP(BT+(Zo)7yB’1)
< D5 "D} F ot oyiy + 3 IDE D5l sy
+ SN2l ot -y

< C (IDE D Fll (it a1y + MIDE "D =l e gy + 10l DE D Ml et ()



56 P. FEEHAN AND C. POP

for C = C(r,p), while Lemma implies that

k— m
1A, 1D Dy ull 1o i (20) 451

kb1— k-
< C (IlwDE "Dy ull s gy o1y + 18DE DYl ot 41

1+ ) DE DSl o )51 )

< O (DA Dl o gt oy + I1DE ™ Dyl ot oy + 105 Dl e )

where C' = C(A,r) and ( is chosen such that ||C||CQ(B;F(ZO)) < Mr~2, where M > 0 is a universal

constant. But f € VVI?)IZH’p (€) by hypothesis and from Proposition (applied with k replaced
by k+1 and p > max{4,2 + (k + 1) + 8} = max{4,3 + k + 3}), we know that

k+1— - k+2— - 5
Dytt=mpm=ly,  DEP2mpeTly e C(Bf (%)), 1<m<k,
Ditt=mpmy,  DETmDI, DETMDIMu e C(Bf (20)), 0<m <k,

z0)

since Bf (z0) € € and u € C**1(B}(29)). The preceding inequalities and boundedness conditions
ensure that the integrability condition (5.27) holds.

In_particular, (DE=mDimu e C (B;E1 (z0)) and, because ( = 1 on B;r/Q(zo), we obtain DE~™ D €
C;"(B:r/z(zo)), as desired. This completes the proof of (5.26) (when ¢ = k) and hence that
ue Ch (o).

Finally, we prove the a priori estimate (1.8). Since ¢’ € 0" and dist(0,0",0,0") > d; and
0" C (=A, A)x(0,A) by hypothesis, there are a finite number of balls of radius 7 := min{d; /4, R; }
(the number of balls is determined by r = r(dy, R1) = r(d1, k) and A) such that

O C U B:F/Q(ZO’Z') U B,,/g(zl,j), (529)
4,3
with
HN B4T(ZO,Z') c 0" and B4r(2’17j) co”.

For each i, we let (; € C§°(H) be a cutoff function such that 0 < §; < 1 on H, and (; = 1 on
B:r/2(z0,i), and supp (; C B;f(20,), and HCiHCQ(Bj_(ZO,i)) < Mr—2. The preceding L? estimate for
ka,m,u yieldS
1Gi fre,m,u ‘LP(Bi(zo,i)) <C (Hf”wk,p(Bj(ZO)i)),yB—l) + HuHcﬁﬂ(Bj(ZO’i))) ;o 0<m<k,

with C' = C(k,p,r). Thus, Proposition (noting that B;f(z9) € Bj.(20) and By .(20) € 0"
with dist(81 B, (20),010") > 2r since B (z9) C ") and the definition of w = yf—le—ry—7V1+2?
in (2.5) gives

HCZ'fk:m:U”LP(Bﬂ'(zO’i)) < C (Hf||W2k+2,p(B;;(z0’i))7m) + HUHL2(BS_T(20,1))JU)> y 0<m< ki, (5.30)

with C = C(A,dy, k,p,r) = C(A,d1, k,p). Similarly, the preceding L estimate for [A, C]D’;*mD;"u
yields

114, DA™ Dy ull st () < € (1 It o -1y + Nl as () » O Sm <,
with C' = C(A,p,r). Thus, Proposition now gives, for 0 < m < k,

114, GIDE ™ Dyl st gy < C (1 sz (st oy + 1l 255 oy )+ (331
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with C' = C(A,d1, k,p). By combining (5.28)), (5.30), and (5.31), and recalling that {; = 1 on
B:r/2(zo,i) and supp ¢; C B, (20,;), we obtain, for 0 < m < k,
k—
IDE" Dy ullg a0y < € (I lwansang o ey + 10l 228 o0

with C' = C(A,dy, k,p). Therefore, by the same argument, for any 0 < m < ¢ < k, we have

{—m mym
1D Dl 5y < © (I sz o, + Il o) (5:32)
with C = C(A,dy, k,p).
On the other hand, by applying (5.24]) to the balls B, (21, ;), we obtain
lullerss g, aer) < C (I lwsns ) + lll25.cern) ) - (5.33)

with C = C(A, k,p,r) = C(A,d1, k,p). The desired a priori estimate (1.8) now follows by com-
bining the a priori estimates (5.32)) and (5.33)), noting that C’kH(B:r/z(zl,j)) — C’k’o‘(B:r/z(zl,j))
and using ([5.25)) to give

1+A2
HfHW%,p(BT(ZLj)) < 67\/T

HfHWZk’p(Br(Zl,j)rm)'

and || fllw2rr(B, (21 ;)0) < [ fllw2rp(o7 ). This completes the proof. O
Next, we have the

Proof of Corollary[1.9. As in the proof of Theorem it suffices to choose a cover ([5.29)) of &’

by open balls B, j5(21,j) or half-balls B;L/2(zo,j) contained in 0" which is uniformly locally finite.

Again using the definition of w = yf~le-m—1V1i+te? iy (2.5) to replace the integral weights to in

(5.32) and 1 in (5.33)), respectively, by y”?~! on the right-hand side and arguing just as in the
proof of Proposition to eliminate factors such as ez /%0l or e%mﬂ", we see that

Hu”cﬁ*“(éj/Q(zo,i)) <cC (HfHW2k+27P(B;T(ZO’i)7yB*1) + HUHLQ(B;(ZOJ)WB*I)) (by (5.32)),

HUHC”ﬁLl(Br/Q(ZLj)) S C <”fHWQk’p(BT(zl,j),yﬂ_l) + HUHLQ(BT(ZLJ'),ZJ’B_I)) (by ),
with C' = C(A, dy, k,p). Therefore, using C*1(B, 5(z1,5)) < C’f’a(Brm(zl,j)), we obtain

P el ke 52 + 5P Nlctos, ey S C (I lwaesnrion ooy + Nulzzon o) )
with C = C(A,dy, k,p). Since
HUHck(@) < Sll}P ||U||ck(3;51 (20.)) + Sljp ||UHck(15‘:R1 (21,5))

and, denoting
k k—
[D%u]ce @y == Oglggk[Dx "Dyt u]ce (@)

for any U C H, we see that
HUHC'f»&(gW) = ||UH0k(0?/) + [DkU]Csa(ﬂf/) (Definition [2.14))
k k

Combining the preceding estimates and recalling that » = min{d; /4, R1} in (5.29)), so r = r(d1, k),
yields the desired a priori bound (1.9) for ||ul[ e (&) O
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Lastly, we turn to the

Proof of Theorem [I.11] By hypothesis, we have f € C(0) and (1 +y)g € W?>(0), since g €
C(0) with (1 +y)g € C?(0). Therefore, Theorem (with £ = 0) implies that there exists
a unique solution u € H'(&,w) to the variational equation , with boundary condition
u—g€ HO,w).

By [18, Corollary 8.28], we must have v € C(0 U 0,0), since w = g on J0 in the sense of
HY(0,w) and g € C(10), so u = g on 0,0, that is, u obeys the boundary condition (T.2).
Because f € C(0) by hypothesis, the maximum principle [I1, Theorem 8.15] implies that u is
bounded, that is, u € L*>(0).

By hypothesis, we also have f € C’?k%’a(ﬁ). For any 1 < p < oo, there is a continuous
embedding C2¥T6%(0) < W2k+6p(U, 1) for any U € H, by Definition of CE(T) for £ > 0,
and hence f € W20P(g w) = W2F2P2P (5 1), Choose p = max{4,3 + (k+2) + 8} + 1 =
6 + k + B and observe that Theorem implies that v € CFT>%(£). From the Definition
of CF*T(T), it follows that there is a continuous embedding CE*(0) — CE21*(0)), for any
U € H. Hence, u € C§’2+a(ﬁ).

Since the equation and the desired Schauder a priori estimate are invariant under
translations with respect to z and diam(&”) < A by hypothesis, we may assume without loss of
generality that ¢” C (—A,A) x (0,A). Therefore, the desired Schauder estimate follows
from Theorem and the a priori estimate and the fact that

||u||0§2+a(5>/) < CHUHC§+2,Q(5,),
where C = C(A). O

Proof of Corollary[1.15 Theorem implies that u € C’g(BEl (20)), for each corner point zg €
900 N&O. Thus, u € C2 Z

710C(5’) and, because u is bounded, we obtain u € C(&). Moreover,
because u is uniformly C%(B*)-Holder continuous for all balls B C R?, where a = a(4,k, K) €
(0,1) is the smallest Holder exponent in Theorems and [2.11) and in [I8, Theorem 8.29], we
have u € Cf, [(0). O
Proof of Corollary[1.16, The desired Schauder estimate (1.11)) follows by replacing the role of the
a priori estimate (]ED with that of the a priori estimate in the proof of Theorem m ]

APPENDIX A. APPENDIX

For the convenience of the reader, we collect here some useful facts from some our earlier
articles for easier reference, together with some technical proofs of results used in the body of this
article. In we describe approximation results for the weighted Sobolev spaces appearing in
this article and which are used, for example, to prove integration-by-parts formulae, as illustrated
in §A72] The relationship between “cycloidal” and Euclidean balls and half-balls is discussed in
Section describes how to translate [I12, Theorems 1.7 & 1.11] into forms more suitable
for application in this article, namely Theorems and though we include Theorems

and as well, even though not needed for the present article. Finally, in we
explain the need for some of the technical hypotheses in Proposition [4.15

A.1. Approximation by smooth functions. We begin with the
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Definition A.1 (C'-orthogonal curves in the upper half-space). We say that a curve T C H is
uniformly C-orthogonal to OH if T is a relatively open C'-curve and there is a positive constant,
d, such that for each point zy = (z9,0) € T N OH we have

TN Bs(z0) C {(z0,y) € R® : y > 0}.
The next approximation resulﬁ follows from [3, Corollary A.12].

Theorem A.2 (Density of smooth functions). Let & C H be a domain such that 010 is uniformly
C'-orthogonal to OH. Then C§°(0) is a dense subset of H*(0,w), and #*(0,w), and W*(0, )
for all integers k > 0.

Proof. When k = 0, 1,2, the conclusion for H*(&,w) = 5% (0, w) is given by [3, Corollary A.12],
which asserts that C§°(0) is a dense subset of H*(&,10). The proof of [3, Corollary A.12] extends
easily to include the remaining cases. O

A.2. Integration by parts. We recall the special case of [3, Lemma 2.23]; no hypothesis on
010 is required here because we assume v € H{ (&, w) rather than allow any v € H(0,w).

Lemma A.3 (Integration by parts for the Heston operator). Let ¢ < H be a domain. If
u € H?(O,w) and v € H} (O, w), then Au € L*(0,w) and

(Au,v) 126 0) = alu,v). (A1)
Proof. When @ € C§°(0) and © € C§°(0), we obtain

(Aﬂ, ’D)LQ(ﬁ,m) == a(ﬂ, ’D)
by direct calculation, as in the proof of [3, Lemma 2.23]. Because supp? C £ is compact, we may
choose a subdomain ¢’ € € such that 0,0’ is uniformly C'-orthogonal to OH and supp? C &’.

If u € H?(O,w), Theorem implies that there is a sequence {u,}nen C C§°(0") such that
u, — u strongly in H?(0,w) as n — oo and thus

(A, 0) 20wy = (A, 0) L2(0r ) = 1 (AU, 0)p2(0rw) = i a(un, 0) = a(u, 0),

because A : H?(0, 1) — L?(0, ) is a continuous linear operator and a : H'(0, ) x H' (0, w) —
R is a continuous bilinear map. . Since v € H} (&, w), there is a sequence {v,}nen C C5°(0)
such that v, — v strongly in H'(&, 1) as n — oo and thus

(Au,v) 26 0) = ,}LIEO(AU’U”)LQ(@W) = nh_}rr;o a(u,v,) = a(u,v).
This completes the proof. ]

A.3. Relationship between cycloidal and Euclidean balls. The relationships be-
tween the cycloidal and Euclidean distance functions and between the cycloidal and Eu-
clidean balls are easily generalized from the case yop = 0 to yp > 0. Denoting S = s(z,2p) and
D = |z — z|, and using y < yp + D, then

D =S\/y+yo+D < Sy2y0 +2D,
D= 82| < S5v/250+ 52 < S (V200 + 5)

24While the conclusion holds for weaker hypotheses on 010, the result suffices for applications in this article
and counterexamples show that some conditions on the regularity of 01 ¢ and the geometry of its intersection with
OH are required.

and one finds that
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and hence
D <252 +/2y,S.
Therefore,
|z — 20| < 25(2, 20)2 + 5(2, 20) v/ 2¥0, (A.2)
and so
PBr(20) C HN By,2y, jggo(20), V2o € H, 7> 0, (A.3)
as desired.

A.4. Proofs of Theorems and The original statement

of [12, Theorem 1.7] combines Theorem (supremum estimate away from corner points) and
Theorem (supremum estimate near corner points). Similarly, the original statement of [12,
Theorem 1.11] combines Theorem (Holder regularity and a priori estimate away from corner
points) and Theorem (Holder regularity and a priori estimate near corner points). The
theorem statements in [12] use balls defined by the cycloidal distance function, do not make the
dependencies of the constants as explicit as we do here and, in the case of [I2] Theorem 1.11],
state estimates in terms of L rather than L? norms of w. In this appendix, we describe how
to translate [I2, Theorems 1.7 & 1.11] into the forms used in this article, noting that in [12] the
dimension of the upper half-space is denoted by n = 2.

Proof of Theorem[2.5. A close inspection of the proof of [12, Theorem 1.7] reveals that the supre-
mum estimate holds for any positive constant R with the property that @E(Zo) C 0. In partic-

ular, we may choose R := \/Ry/2, where Ry > 0 is the constant in the hypothesis of Theorem
such that f € L”(BE0 (20),¥°71). Since Ry = 2R?, we see by (2.20) that ,%’E (20) C B;):O(ZQ),
and so the hypothesiﬂ on f in [I2, Theorem 1.7] (with s = p) is satisfied when

f e LP(BL(20),"), (A4)

since f € Lp(BEO(zo),yﬁfl) and Lp(BEO(zo),yB*I) C Lp(%;{g(zo),yﬁfl).
For any R > 0, we h_ave by (2.18) that B} (z0) C ,%’\J;E(zo) and therefore we obtain, for all
R > 0 obeying 2V R < R or, equivalently, 8R < Ry,

||UHLOO(B§(ZO)) < ||UHLOO(‘%$§(2:O)) (by "
<C (Hu\lp(@ﬁ(zo),yﬂ_l) + HfIILp(g;ﬁ(ZO),yﬂ_IJ (by [12, Equation (1.21)])

<C (||u||L2(B§R(ZO),y5‘1) + HfHLp(BgR(ZO)gﬂ—l)) )
and thus,
||uHLoo(B§(zo) <C (HUHLQ(B;_R(ZO)’:[//B*l) + Hf”Lp(B;R(ZO),yﬁfl)) ) (A.5)

where the last inequality follows from the fact that %’; \/E(ZO) C Bgr(20) by (2:20) and C =
C(A,p, R). We obtain the desired inequality (2.14) by choosing R; := R(/8 and setting R = R;
in (A.5). 0

25Tn [12], the ball B; (z0) was denoted by B, (z0) for r > 0.
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Proof of Theorem[2.10, As in the proof of Theorem we choose Ry := 1/Ro/2, which implies
by (2.20)) that @EO (20) C BEO(ZQ) since Ry = 2RR2, and so the hypothesis %> on f in [I2, Equation
(1.26)] (with s = p) is satisfied when f obeys (A.4).

A closer examination of the proof of [12, Theorem 1.11]_show§ us that there are positive
constants C' = C(A,p, Rp), and o = a(A,p, Ry) € (0,1), and R; = R1(Rp) such that

[Wlos (s o < C <||f||Lp(@;0(z0)yyal> + IIUHLw(ﬂ;Ouo))) '
If we choose Ry := R?, then yields B;I(zo) C %’El(zo), and thus
[u] Ce (B} (#0)) < [u]ee (#5 (20))
<C (HfHLp(gng(zo),yﬂ—l) + ||“”L°°(=@§O(Zo))> ’
<C (HfHLP(BEO(Zo),yﬁ_l) + HUHL""(BEO(ZO))) ’

where we used the inclusion @EO (20) C BEO(zO) to obtain the final inequality. This concludes
the proof of Theorem [2.10 O

Proof of Theorem[2.13. Let Ry = Ro(Ro) < Ro be the constant produced by Theorem given
Ry > 0, so (2.14) gives

HUHL(’Q(BEQ(Z())) <C <||f”Lp(B§O(20),y51) + HUHH(BEO(ZO)’?J[B1)> )

and let Ry = Ri(R2) < Ry (and recall that Ry = Ra(Rp)) be the constant produced by Theorem
2.10, given Ry > 0, so ([2.23]) gives

(tlegiss, eon < € (1imcas, o=+ 1ol can ) -

Finally, noting that ||U/HC?(BE1 (o)) = ||u||C(B§1 oyt [“]Cg(ngl (z))> We obtain the desired inequal-
ity (2.24)) by combining the preceding two estimates. O

Proofs of Theorems and[2.13 The proofs of Theorems[2.6] and follow exactly
in the same way as the proofs of Theorems and with the only observation that all

constants now also depend on the cone, K. O

A.5. Need for the auxiliary regularity condition in Proposition We explain the
role of the hypothesis, D¥u € H'(0,w), in the statement of Proposition

First, we explain the role of the auxiliary regularity condition when m = 0 in (4.23)). If £ =
1,m = 0and u € H?(0,w), then we recall from that while this ensures (1+y)!/?u, belongs
to L?(0,w), it does not imply that y'/2u.,, y' U4, belong to L?(0,w), and so u € H?(0,w)
does not imply u, € H'(0,w). However, when k = 1,m = 1, we have seen that u € H?(0, )
does imply u, € HY(0,10,).
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If u € #*1(0,w) and k > 2, then we recall from Definition |4.3| that

Lz(ﬁa mm—Q)a 3 <m< ka

Dk+1—mDmu c
Ve Y L?(0, ), m=1,2,

(

L*(O,wpm-1), 2<m<k

Dk—mDm—H e y WWm ) > SR,
Yo 5 S ), m=1,

that is,

L2 ﬁa mm—1)7 3 <m< k7

1/2Dk’+1—mDmu c
vt y L?(0, 1), m=1,2,

(

(
L?(0,w,,), 2<m<k,
L?(

1/2Dk’—mDm+1u c
Y v Y ﬁ,ml), m=1.

Note that L?(0,vw,,_1) C L?(0,w,,) for all m > 1. Moreover, u € J£*1(0,w) with k > 2
implies (14y)DE~™Du € L*(0,tp,—2) C L*(0,wy,) when 3 <m < k and (1+y)Di~™Di"u €
L?(0,w) C L*(0,w,,) when m = 0,1,2. Thus, for k > 2,

uwe A (0, w) = Dy "DJ'ue H (O, wn), k>2 1<m<k.

However, when k > 2 and m = 0, the auxiliary condition D¥u € H'(0,w) required for the left-
hand side of to be well-defined is not implied by the hypothesis v € J#*+1(&,w), since
the latter condition implies yD**'u, yD¥D,u € L?(0,w) but not y'/2DE 'y, y'/2DED,u €
L0, ).

Second, we explain the role of the auxiliary regularity condition when m = 1 in . If
u € A0, 1) and k > 2, then we recall from Definition |4.3| that

L2(ﬁ Wy,_3), m>4

Dk+27mDmfl e y tUm ) = 4,

it v S 200), m=1,2,3

that is,

L2(ﬁa mm—l)y m > 47

L?(0, 1), m=1,2,3.

Hence, when k > 2 and m = 1, the auxiliary condition D’;Hu € L*(0, ;) required for the right-
hand side of ([#.23)) to be well-defined is not implied by the hypothesis v € %1€, w). How-
ever, the condition D¥u € H'(€,w) ensures, by definition (2.2) of H'(&,w), that y1/2D§+1u €
L?(0,w) or, equivalently, D'y € L?(0,101).

DDty e {
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