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Abstract

Multiscale stochastic volatility models have been developed as an efficient way to capture the principle
effects on derivative pricing and portfolio optimization of randomly varying volatility. The recent book
Fouque, Papanicolaou, Sircar and Sølna (2011, CUP) analyzes models in which the volatility of the
underlying is driven by two diffusions – one fast mean-reverting and one slow-varying, and provides
a first order approximation for European option prices and for the implied volatility surface, which is
calibrated to market data. Here, we present the full second order asymptotics, which are considerably
more complicated due to a terminal layer near the option expiration time. We find that, to second order,
the implied volatility approximation depends quadratically on log-moneyness, capturing the convexity
of the implied volatility curve seen in data. We introduce a new probabilistic approach to the terminal
layer analysis needed for the derivation of the second order singular perturbation term, and calibrate to
S&P 500 options data.

1 Introduction

Stochastic volatility models relax the constant volatility assumption of the Black-Scholes model for option
pricing by allowing volatility to fluctuate randomly. As a result, they are able to capture some of the well-
known features of the implied volatility surface, such as the volatility smile and skew. While some single-
factor diffusion stochastic volatility models such as Heston’s [14], enjoy wide success due to the existence of
semi-analytic pricing formula for European options, it is known that such models are not adequate to match
implied volatility levels across all strikes and maturities; see, for instance, [11]. Numerous empirical studies
have identified at least a fast time scale in stock price volatility on the order of days, as well as a slow scale on
the order of months, for example [2, 5, 15, 17]. This has motivated the development of multiscale stochastic
volatility models, in which instantaneous volatility levels are controlled by multiple driving factors running
on different time scales.

A class of multiscale stochastic volatility models is analyzed in [7], where an approximation for European
options and their induced implied volatilities is derived, which can capture the overall level of implied
volatility, its skew across strike prices and its term-structure over a wide range of maturities. However, the
analysis there is limited to a first order approximation, which cannot pick up the slight convexity of the
observed equity implied volatility surface. In this paper we extend the results of [7] to second order. This
extension is non-trivial, as it requires a careful terminal layer analysis, which we approach probabilistically.
For some related multiscale perturbation techniques in European option pricing, we refer for instance to [3]
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and [4] (spectral methods), [16] (matched asymptotic expansions), [1], [13] and [10] (Malliavian calculus),
and [21] (inner-outer expansions).

Our second order results allow us to capture the slight convexity of the implied volatility skew. Ad-
ditionally, we are able to maintain analytic tractability which is important for calibration to data, as we
demonstrate. Of course, numerous asymptotic regimes have been analyzed in recent years for the option
pricing problem in incomplete markets: see [8], [12] and [19] for some references. Here our focus is not just
on deriving and proving convergence of the approximation in the appropriate limits, but in disentangling the
calibration procedure that results from it. Compared to the first order theory, this is much more involved
as there are many more group parameters and basis functions that have to be accommodated to implied
volatility data. Despite the increase in complexity, we show this can be implemented successfully.

The rest of this paper proceeds as follows. In Section 2, we describe the class of multiscale stochastic
volatility models that we will work with. Using a formal singular and regular perturbation analysis, we
derive a pricing approximation which is valid for any European-style option. We establish the accuracy of
our pricing approximation in Theorem 2.4. In Section 3, we present an explicit formula for the implied
volatility surface induced by our option pricing approximation. Additionally, we show how a parameter
reduction, crucial for calibration purpose, can be achieved with no loss of accuracy. In Section 3.2, we
outline a procedure for calibrating the class of multiscale stochastic volatility models to the empirically
observed implied volatility surface of liquid calls and puts. We carry out this calibration procedure on call
and put data taken from the S&P500 index. Section 4 concludes.

2 Second Order Option Pricing Asymptotics

We consider the class of multiscale stochastic volatility models studied in [8]. Let X denote the price of
a non-dividend-paying asset whose dynamics under the historical probability measure P is defined by the
following system of stochastic differential equations (SDEs):

dXt = µXt dt+ f(Yt, Zt)Xt dW
x
t ,

dYt =
1

ε
α(Yt) dt+

1√
ε
β(Yt) dW

y
t ,

dZt = δ c(Zt) dt+
√
δ g(Zt) dW

z
t .





Here, (W x, W y, W z) are P-Brownian motions with correlation structure

d〈W x,W y〉t = ρxy dt, d〈W x,W z〉t = ρxz dt, d〈W y,W z〉t = ρyz dt,

where (ρxy, ρxz, ρyz) satisfy |ρxy|, |ρxz|, |ρyz| < 1 and 1+2ρxyρxzρyz−ρ2xy−ρ2xz−ρ2yz ≥ 0, which guarantees
that the correlation matrix of the Brownian motions is positive-semidefinite. The asset X has geometric
growth rate µ and stochastic volatility f(Yt, Zt) which is driven by two factors, Y and Z. Under the physical
measure, the infinitesimal generators of Y and Z are scaled by factors of 1/ε and δ respectively. Thus,
ε > 0 and 1/δ > 0 represent the intrinsic time-scales of these processes. We will work in the regime where
ε << 1 and δ << 1 so that Y and Z represent fast- and slow-varying factors of volatility respectively. Most
importantly, we assume the fast factor is mean-reverting, that is that Y is an ergodic process with a unique
invariant distribution Π under P, which is independent of ε.

Under the risk-neutral pricing measure P̃ (chosen by the market) the dynamics are described by

dXt = r Xt dt+ f(Yt, Zt)Xt dW̃
x
t ,

dYt =

(
1

ε
α(Yt)−

1√
ε
Λ(Yt, Zt)β(Yt)

)
dt+

1√
ε
β(Yt) dW̃

y
t ,

dZt =
(
δ c(Zt)−

√
δ Γ(Yt, Zt) g(Zt)

)
dt+

√
δ g(Zt) dW̃

z
t ,





(2.1)
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where (W̃ x, W̃ y, W̃ z) are P̃-Brownian motions with the same correlation structure as between their P-
counterparts, and r is the risk-free rate of interest. The functions Λ(y, z) and Γ(y, z) represent market prices
of volatility risk, which we have assumed such as to preserve the Markov structure of (X,Y, Z) and of (Y, Z)
by itself.

Consider a European option with expiration date T and payoff h(XT ). The no-arbitrage price of this
option at time t < T can be expressed as a discounted expectation of the option payoff

P ε,δ(t,Xt, Yt, Zt) = Ẽ

[
e−r(T−t)h(XT )

∣∣∣Xt, Yt, Zt

]
.

Here, Ẽ denotes an expectation taken under the pricing measure P̃. Note that we have used the Markov
property of (X,Y, Z) to express the price of the option as a function P ε,δ(t, x, y, z) of the current time t and
the state variables (Xt, Yt, Zt). Using the Feynman-Kac formula, one finds that P ε,δ satisfies the following
partial differential equation (PDE) and terminal condition:

L
ε,δ P ε,δ = 0, P ε,δ(T, x, y, z) = h(x), (2.2)

where, introducing the notation
Dk = xk∂kx···x, k = 1, 2, · · · , (2.3)

the operator Lε,δ is given by

L
ε,δ =

(
1

ε
L0 +

1√
ε
L1 + L2

)
+
√
δ

(
1√
ε
M3 +M1

)
+ δM2,

with

L0 =
1

2
β2(y)∂2yy + α(y)∂y ,

L1 = ρxyβ(y)f(y, z)D1∂y − β(y)Λ(y, z)∂y,

L2 = ∂t +
1
2f

2(y, z)D2 + rD1 − r,

M3 = ρyzβ(y)g(z)∂
2
yz ,

M1 = ρxzg(z)f(y, z)D1∂z − g(z)Γ(y, z)∂z,

M2 =
1

2
g2(z)∂2zz + c(z)∂z.

For general (f, α, β,Λ, c, g,Γ) no explicit solution to (2.2) exists and we seek an asymptotic approximation
for the option price. The fast factor asymptotics is a singular perturbation problem, while the slow factor
expansion is a regular perturbation. Thus, the small-ε and small-δ regime gives rise to a combined singular-
regular perturbation about the O(1) operator L2. We expand P ε,δ in powers of

√
ε and

√
δ as follows

P ε,δ(t, x, y, z) =
∑

j≥0

∑

i≥0

√
ε
i√
δ
j
Pi,j(t, x, y, z).

This is a formal series expansion, and our approach is to find Pi,j for i + j ≤ 2 and establish an accuracy
result for the truncated series. We point out that we are working within an infinite-dimensional family
of models since the functions (f,Λ,Γ) are unspecified: the 18 group parameters that are found in Section
2.7 and calibrated in Section 3.2 contain specific moments of these functions identified by the asymptotic
analysis.

Because we are performing a dual expansion in half-integer powers of ε and δ, we must decide which of
these parameters we will expand in first. We choose to perform a regular perturbation expansion with respect
to δ first. Then, within each of the equations that result from the regular perturbation analysis, we will
perform a singular perturbation expansion with respect to ε. As the combined regular-singular perturbation
expansion is quite lengthy, to aid the reader, we provide a summary of the key results in equation (2.41),
located at the end of this section.
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2.1 Regular Perturbation Analysis

The regular perturbation expansion proceeds by expanding Lε,δ and P ε,δ in powers of
√
δ as follows

L
ε,δ = L

ε +
√
δMε + δM2, P ε =

∑

j≥0

√
δ
j
P ε
j , (2.4)

where from (2)

L
ε =

1

ε
L0 +

1√
ε
L1 + L2, M

ε =
1√
ε
M3 +M1, P ε

j =
∑

i≥0

√
ε
i
Pi,j . (2.5)

Inserting (2.4) into (2.2) and collecting terms of like-powers of
√
δ, we find that the lowest order equations

of the regular perturbation expansion are

O(1) : 0 = L
εP ε

0 , (2.6)

O(
√
δ) : 0 = L

εP ε
1 +M

εP ε
0 , (2.7)

O(δ) : 0 = L
εP ε

2 +M
εP ε

1 +M2 P
ε
0 . (2.8)

Within each of these three equations, we now perform a singular perturbation analysis with respect to ε.

2.2 Singular Perturbation Analysis of the O(1) Equation (2.6)

Beginning with the O(1) equation, we insert expansions (2.5) into (2.6) and collect terms of like-powers of√
ε. The resulting O(1/ε) and O(1/

√
ε) equations are:

O(1/ε) : 0 = L0P0,0,

O(1/
√
ε) : 0 = L0P1,0 + L1P0,0.

We note that all terms in L0 and L1 take derivatives with respect to y. Thus, if we choose P0,0 and P1,0

to be independent of y, the above equations will automatically be satisfied. Hence, we seek solutions of the
form

P0,0 = P0,0(t, x, z), P1,0 = P1,0(t, x, z),

i.e., no y-dependence. Continuing the asymptotic analysis, the O(1), O(
√
ε) and O(ε) equations are:

O(1) : 0 = L0P2,0 +✘✘✘✘L1P1,0 + L2P0,0, (2.9)

O(
√
ε) : 0 = L0P3,0 + L1P2,0 + L2P1,0, (2.10)

O(ε) : 0 = L0P4,0 + L1P3,0 + L2P2,0, (2.11)

where we have used the fact that L1P1,0 = 0.
Equations (2.9), (2.10) and (2.11) are Poisson equations of the form

0 = L0P + χ. (2.12)

By the Fredholm alternative, equation (2.12) admits a solution P only if χ is in the orthogonal complement
of the null space of the adjoint operator L∗

0. Since the unique invariant distribution Π satisfies L∗
0Π = 0,

this leads to the solvability or centering condition:

〈χ〉 :=
∫
χ(y)Π(dy) = 0 . (2.13)
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Applying the centering conditions to equations (2.9), (2.10) and (2.11), and using the fact that P0,0 and
P1,0 do not depend on y, we find

O(1) : 0 = 〈L2〉P0,0, (2.14)

O(
√
ε) : 0 = 〈L1P2,0〉+ 〈L2〉P1,0, (2.15)

O(ε) : 0 = 〈L1P3,0〉+ 〈L2P2,0〉 , (2.16)

where the operator 〈L2〉, given by

〈L2〉 = ∂t +
1
2 σ̄

2(z)D2 + rD1 − r, (2.17)

with

σ̄2(z) :=
〈
f2(·, z)

〉
=

∫
f2(y, z)Π(dy).

We observe that 〈L2〉 is the Black-Scholes pricing operator with effective averaged volatility σ̄(z) =
√
σ̄2(z)

in which the level z of the slow factor appears as a parameter.
Expanding the terminal condition in (2.2) leads to the terminal conditions

O(1) : P0,0(T, x, z) = h(x), (2.18)

O(
√
ε) : P1,0(T, x, z) = 0. (2.19)

We denote the solution to (2.14) with terminal condition (2.18) by

P0,0(t, x, z) = PBS(t, x; σ̄(z)),

the Black-Scholes price of the option with volatility σ̄(z), maturity T , and payoff function h.
In order to make use of equation (2.15) , we need an expression for 〈L1P2,0〉. Using (2.14), we re-write

(2.9) as follows

L0P2,0 = −L2P0,0 = − (L2 − 〈L2〉)P0,0 = −1

2

(
f2 −

〈
f2
〉)

D2P0,0.

Introducing a solution φ(y, z) to the Poisson equation

L0 φ = f2 −
〈
f2
〉
, (2.20)

we deduce the following expression for P2,0:

P2,0(t, x, y, z) = −1

2
φ(y, z)D2P0,0(t, x, z) + F2,0(t, x, z), (2.21)

where F2,0(t, x, z) is independent of y.

Remark. The form of (2.21) shows that the natural terminal condition P2,0(T, x, y, z) = 0 is not enforceable
because the singular perturbation with respect to the fast factor creates a terminal layer near t = T . However,
as we will demonstrate in Section 2.6, the ergodic theorem enables us to impose the averaged terminal
condition

O(ε) : 〈P2,0(T, x, ·, z)〉 = 0. (2.22)

and to obtain the desired accuracy of our pricing approximation. In fact, we will see that this is the only

appropriate choice for proof of convergence.

5



Remark. The solution of the Poisson equation (2.20) is defined up to a constant in y. We choose this
constant by imposing the condition

〈φ(·, z)〉 = 0, (2.23)

and we will show in Section 2.6 that this choice does not affect the accuracy of our pricing approximation.

Inserting (2.21) into (2.15) yields the following PDE for P1,0

〈L2〉P1,0 = −〈L1P2,0〉 = −
〈(

ρxyβ f D1∂y − β Λ ∂y

)(
−1

2
φD2P0,0 + F2,0

)〉
= −VP0,0, (2.24)

where the z-dependent operator V is given by

V(z) = V3(z)D1 D2 + V2(z)D2,

and we introduce the notation

V2(z) =
1

2
〈β(·)Λ(·, z)∂yφ(·, z)〉 , V3(z) = −1

2
ρxy 〈β(·)f(·, z)∂yφ(·, z)〉 .

The solution P1,0 of the PDE (2.24) with terminal condition (2.19) will be given in Proposition 2.3.
To determine P2,0, given by (2.21), we need a PDE and terminal condition for the unknown function

F2,0. The terminal condition F2,0(T, x, z) = 0 is imposed by averaging (2.21), and using (2.22) and (2.23).

Proposition 2.1. The function F2,0(t, x, z) satisfies the following PDE and terminal condition

〈L2〉F2,0 = −AP0,0 − VP1,0, F2,0(T, x, z) = 0, (2.25)

where the z-dependent operator A is given by

A(z) = A2(z)D
2
1D2 +A1(z)D1D2 +A0(z)D2 +A(z)D2

2,

A2(z) =
1

2
ρ2xy 〈β(·)f(·, z)∂yψ1(·, z)〉 ,

A1(z) = −1

2
ρxy (〈β(·)Λ(·, z)∂yψ1(·, z)〉+ 〈β(·)f(·, z)∂yψ2(·, z)〉) ,

A0(z) =
1

2
〈β(·)Λ(·, z)∂yψ2(·, z)〉 ,

A(z) := −1

4

( 〈
φ(·, z)f2(·, z)

〉
− 〈φ(·, z)〉

〈
f2(·, z)

〉 )
,

and ψ1(y, z) and ψ1(y, z) satisfy

L0 ψ1 = βf∂yφ− 〈βf∂yφ〉 , L0 ψ2 = βΛ∂yφ− 〈βΛ∂yφ〉 , (2.26)

Proof. The proof is in appendix A.

The solution F2,0 of the PDE with terminal condition (2.25) will be given in Proposition 2.3. This is as
far as we will take the asymptotic analysis of the O(1) equation (2.6).

2.3 Singular Perturbation Analysis of the O(
√
δ) Equation (2.7)

Proceeding as in Section 2.2, we insert expansions (2.5) into (2.7) and collect term of like-powers of
√
ε. The

resulting O(
√
δ/ε) and O(

√
δ/
√
ε) equations are:

O(
√
δ/ε) : 0 = L0P0,1,

O(
√
δ/
√
ε) : 0 = L0P1,1 + L1P0,1 +✘✘✘✘M3P0,0,
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where we have used M3P0,0 = 0 since M3 contains ∂y and P0,0 is independent of y. Recalling that all terms
in L0 and L1 also contain ∂y, we seek solutions P0,1 and P1,1 of the form

P0,1 = P0,1(t, x, z), P1,1 = P1,1(t, x, z).

Continuing the asymptotic analysis, the O(
√
δ) and O(

√
δ
√
ε) equations are:

O(
√
δ) : 0 = L0P2,1 +✘✘✘✘L1P1,1 + L2P0,1 +✘✘✘✘M3P1,0 +M1P0,0, (2.27)

O(
√
δ
√
ε) : 0 = L0P3,1 + L1P2,1 + L2P1,1 +M3P2,0 +M1P1,0. (2.28)

Equations (2.27) and (2.28) are Poisson equations of the form (2.12). Applying the centering condition (2.13)
to (2.27) and (2.28) yields

O(
√
δ) : 0 = 〈L2〉P0,1 + 〈M1〉P0,0, (2.29)

O(
√
δ
√
ε) : 0 = 〈L1P2,1〉+ 〈L2〉P1,1 + 〈M3P2,0〉+ 〈M1〉P1,0. (2.30)

We also impose the following terminal conditions

O(
√
δ) : P0,1(T, x, z) = 0, (2.31)

O(
√
δ
√
ε) : P1,1(T, x, z) = 0. (2.32)

The PDE (2.29) and terminal condition (2.31) can be used to find an expression for P0,1, which will be given
in Proposition 2.3.

The operator 〈M1〉 appearing in (2.29) is given by

〈M1〉 = ρxzg 〈f〉D1∂z − g 〈Γ〉 ∂z =
2

σ̄′
(V1(z)D1∂z + V0(z)∂z),

where σ̄′ = ∂z σ̄ and we introduce the notation

V1(z) =
1

2
ρxzσ̄

′(z)g(z) 〈f(·, z)〉 , V0(z) = −1

2
σ̄′(z)g(z) 〈Γ(·, z)〉 .

In order to make use of equation (2.30), we need expressions for 〈L1P2,1〉 and 〈M3P2,0〉.

Proposition 2.2. We have the following expressions:

〈L1P2,1〉 = (V3D1D2 + V2D2)P0,1 +
1

σ̄′

(
C2D

2
1 + C1D1 + C0

)
∂zP0,0, (2.33)

〈M3P2,0〉 =
1

σ̄′
CD2∂zP0,0, (2.34)

where

C2(z) = −ρxyρxzσ̄′(z)g(z) 〈β(·)f(·, z)∂yψ3(·, z)〉 ,
C1(z) = ρxzσ̄

′(z)g(z) 〈β(·)Λ∂yψ3〉+ ρxyg 〈β(·)f(·, z)∂yψ4(·, z)〉 ,
C0(z) = −σ̄′(z)g(z) 〈β(·)Λ(·, z)∂yψ4(·, z)〉 ,

C(z) = −1

2
ρyzσ̄

′(z)g(z) 〈β(·)∂yφ(·, z)〉 ,

and ψ3(y, z) and ψ4(y, z) satisfy

L0ψ3 = f − 〈f〉 , L0ψ4 = Γ− 〈Γ〉 . (2.35)
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Proof. The proof is in Appendix B.

Inserting (2.33) and (2.34) into (2.30), we find

〈L2〉P1,1 = −VP0,1 −
1

σ̄′
C ∂zP0,0 − 〈M1〉P1,0, (2.36)

where the z-dependent operator C is given by

C(z) = C2(z)D
2
1 + C1(z)D1 + C0(z) + C(z)D2.

The solution P1,1 of the PDE (2.36) with terminal condition (2.32) will be given in Proposition 2.3 . This is
as far as we will take the asymptotic analysis of equation (2.7)

2.4 Singular Perturbation Analysis of O(δ) Equation (2.8)

We now move on to the O(δ) equation (2.8). Proceeding as in Sections 2.2 and 2.3, we insert expansions
(2.5) into (2.8) and collect term of like-powers of

√
ε. The resulting O(δ/ε) and O(δ/

√
ε) equations are:

O(δ/ε) : 0 = L0P0,2,

O(δ/
√
ε) : 0 = L0P1,2 + L1P0,2 +✘✘✘✘M3P0,1,

where we have used M3P0,1 = 0 since M3 contains ∂y and P0,1 is independent of y. Recalling that all terms
in L0 and L1 also contain ∂y, we seek solutions P0,2 and P1,2 of the form

P0,2 = P0,2(t, x, z), P1,2 = P1,2(t, x, z).

Continuing the asymptotic analysis, the O(δ) equation is:

O(δ) : 0 = L0P2,2 +✘✘✘✘L1P1,2 + L2P0,2 +✘✘✘✘M3P1,1 +M1P0,1 +M2P0,0. (2.37)

Equation (2.37) is a Poisson equation of the form (2.12) whose centering condition (2.13) is

O(δ) : 0 = 〈L2〉P0,2 + 〈M1〉P0,1 +M2P0,0. (2.38)

We also impose the following terminal condition

O(δ) : P0,2(T, x, z) = 0, (2.39)

The solution P0,2 of the PDE (2.38) with terminal condition (2.39) will be given in Proposition 2.3. This is
as far as we will take the combined singular-regular perturbation analysis.

2.5 Review of Asymptotic Analysis and Pricing Formulas

In the previous sections we showed (formally) that the price of a European option can be approximated by

P ε,δ ≈ P̃ ε,δ := P0,0 +
√
εP1,0 +

√
δ P0,1 + ε P2,0 + δ P2,0 +

√
ε δP1,1, (2.40)

where

O(1) : 〈L2〉P0,0 = 0, P0,0(T, x, z) = h(x),

O(
√
ε) : 〈L2〉P1,0 = −VP0,0, P1,0(T, x, z) = 0,

O(
√
δ) : 〈L2〉P0,1 = −〈M1〉P0,0, P0,1(T, x, z) = 0,

O(ε) : P2,0 = −1

2
φD2P0,0 + F2,0,

〈L2〉F2,0 = −AP0,0 − VP1,0, F2,0(T, x, z) = 0,

O(δ) : 〈L2〉P0,2 = −〈M1〉P0,1 −M2P0,0, P0,2(T, x, z) = 0,

O(
√
ε δ) : 〈L2〉P1,1 = −VP0,1 −

1

σ̄′
C ∂zP0,0 − 〈M1〉P1,0, P1,1(T, x, z) = 0,





(2.41)
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and the z-dependent operators in (2.41) are given by

O(1) : 〈L2〉 = ∂t +
1

2
σ̄2

D2 + rD1 − r,

O(
√
ε) : V = V3D1D2 + V2D2,

O(
√
δ) : 〈M1〉 =

2

σ̄′
(V1D1 + V0) ∂z

O(ε) : A = A2D
2
1D2 +A1D1D2 +A0D2 +AD2

2,

O(δ) : M2 =
1

2
g2 ∂2zz + c ∂z ,

O(
√
ε δ) : C = C2D

2
1 + C1D1 + C0 + CD2.





(2.42)

In the following, we provide explicit expressions for {Pi,j , i+ j ≤ 2}.

Proposition 2.3. Introducing τ = T − t, we have the following expressions for the {Pi,j}:

P0,0 = PBS(σ̄(z)), P1,0 = τ VPBS(σ̄(z)), P0,1 = τ N1∂σPBS(σ̄(z))

P2,0 = −1

2
φD2PBS(σ̄(z)) + F2,0, where F2,0 =

(
τ A +

1

2
τ2V2

)
PBS(σ̄(z)),

P0,2 =

(
2τ2

3σ̄′
N1N

′
1 ∂σ +

τ2

2
N

2
1

(
∂2σσ +

1

3σ̄
∂σ

)
+
τ

3
B2

(
∂2σσ +

1

2σ̄
∂σ

)
+
τ

2
B1 ∂σ

)
PBS(σ̄(z)),

P1,1 =

(
τ2VN1 ∂σ +

τ

2
C ∂σ +

τ2

σ̄′
N1V

′

)
PBS(σ̄(z)),

where we have introduced the z-dependent operators

N1 = V1 D1 + V0, N
′
1 = V ′

1 D1 + V ′
0 , V

′ = V ′
3D1D2 + V ′

2D2,

and parameters

V ′
j = ∂zVj , j = 0, 1, 2, 3 B2 =

1

2
g2(σ̄′)2, B1 =

1

2
g2σ̄′′ + cσ̄′.

Proof. The proof is in Appendix C.

2.6 Accuracy of the Approximation

To establish the accuracy of our pricing approximation P̃ ε,δ defined in (2.40), we make the following as-
sumptions:

1. The system of SDEs (2.1) has a unique strong solution (X,Y, Z) for fixed ε, δ ≤ 1.

2. The market prices of volatility risk are bounded: ||Λ||∞ <∞ and ||Γ||∞ <∞.

3. Let Y (1) be a diffusion process whose infinitesimal generator is L0 (so that, in distribution, Yt = Y
(1)
t/ε

under P). We assume that Y (1) is ergodic and has a unique invariant distribution Π with density π,
and that L0 has a positive spectral gap. We note that two of the processes that are most commonly
used to model volatility — the Cox-Ingersoll-Ross (CIR) and Ornstein-Uhlenbeck (OU) processes —
satisfy these assumptions.

4. The process Y (1) admits moments of any order uniformly bounded in t:

sup
t

E

[∣∣∣Y (1)
t

∣∣∣
k
]
≤ C(k).
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5. Let Z(1) be a diffusion process whose infinitesimal generator is M2 (so that, in distribution, Zt = Z
(1)
δt

under P). We assume that Z(1) admits moments of any order uniformly bounded in t < T :

sup
t≤T

E

[∣∣∣Z(1)
t

∣∣∣
k
]
≤ C(T, k).

6. We assume that the function f(y, z) is smooth in z, that the solutions φ(y, z) and {ψi(y, z), i ≤ 4} to
equations (2.20), (2.26) and (2.35), are at most polynomially growing in y and z, and that

σ̄2(z) :=

∫
f2(y, z)Π(dy) <∞.

7. We assume that the payoff function h(x) is smooth and bounded with bounded derivatives. The proof
of accuracy provided here (in Appendix D) uses this smoothness assumption. It can be generalized to
nonsmooth payoff functions (such as in the case of call options considered in Section 3) following the
regularization argument given in [6] for the first order approximation with a fast factor. The details of
the generalization to the second order approximation with fast and slow factors are quite lengthy and
we omit them here.

Theorem 2.4. For fixed t < T , x, y, and z, the model price P ε,δ solution of (2.2) and our price approxi-

mation P̃ ε,δ defined by (2.40) satisfy

|P ε,δ(t, x, y, z)− P̃ ε,δ(t, x, y, z)| = O(ε3/2 + ε
√
δ + δ

√
ε).

Proof. The proof is given in Appendix D.

Remark (Terminal Layer Analysis). The main difficulty in extending the accuracy of our pricing approxi-
mation from first order to second order is the treatment of the terminal condition for the second order term
P2,0 arising from the singular expansion due to the fast factor Y . In [16], the solution P2,0 is derived by a
formal matched asymptotic expansion with a terminal layer of size ε. Here, in Appendix D, we provide a
probabilistic proof based on the ergodic property of the fast factor Y , which justifies the choice of terminal
condition made in (2.22).

2.7 Group Parameters and Exotic Option Pricing

We now summarize the parameters needed in the pricing approximation formulas derived in the previous
section. We begin by separating the y-dependent part in P̃ ε,δ given by (2.40), by writing

P̃ ε,δ(t, x, y, z) = −1

2
ε φ(y, z)D2P0,0(t, x, z) + Q̃ε,δ(t, x, z),

where

Q̃ε,δ(t, x, z) := P0,0 +
√
εP1,0 +

√
δ P0,1 +

√
ε δ P1,1 + ε F2,0 + δ P0,2. (2.43)

Using (2.40), (2.41) and the linearity of the operator 〈L2〉, we find that Q̃ε,δ satisfies the following PDE and
terminal condition

〈L2〉 Q̃ε,δ = Sε,δ, Q̃ε,δ(T, x, z) = h(x),

where the source term Sε,δ is given by

Sε,δ =−
√
εVP0,0 −

√
δ 〈M1〉P0,0 −

√
ε δ

(
VP0,1 +

1

σ̄′
C ∂zP0,0 + 〈M1〉P1,0

)

− ε
(
AP0,0 + VP1,0

)
− δ

(
〈M1〉P0,1 +M2P0,0

)

=− (
√
εV)P0,0 − (

√
δ 〈M1〉)P0,0 − (

√
εV)(

√
δ P0,1)− (

√
εδ C)

1

σ̄′
∂zP0,0 − (

√
δ 〈M1〉)(

√
εP1,0)

− (εA)P0,0 − (
√
εV)(

√
ε P1,0)− (

√
δ 〈M1〉)(

√
δ P0,1)− (δM2)P0,0.
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To extract which group parameters are needed for the price expansion, we absorb a half-integer power of ε
and/or δ into the corresponding group parameters and define:

V ε
i :=

√
ε Vi, V δ

i :=
√
δ Vi, Aε

i := εAi, Bδ
i := δ Bi, Cε,δ

i :=
√
εδ Ci. (2.44)

Similarly, we absorb the appropriate ε or δ pre-multiplier into the terms of the expansion (2.43) by defining
P ε
1,0 and P δ

0,1 through

√
ε P1,0(t, x, z) = P ε

1,0(t, x; σ̄(z), V
ε
2 (z), V

ε
3 (z)),

√
δP0,1(t, x, z) = P δ

0,1(t, x; σ̄(z), V
δ
0 (z), V

δ
1 (z)).

Substituting from (2.42) the expressions for M2,V,A, 〈M1〉 and C, and changing the ∂z derivatives in 〈M1〉
and M2 acting on P0,0 into ∂σ derivatives acting on PBS(σ̄(z)), we finally have

Sε,δ =− (V ε
3 D1D2 + V ε

2 D2)PBS − 2
(
V δ
1 D1 + V δ

0

)
∂σPBS

− (V ε
3 D1D2 + V ε

2 D2) P
δ
0,1 −

(
Cε,δ

2 D
2
1 + Cε,δ

1 D1 + Cε,δ
0 + Cε,δ

D2

)
∂σPBS

− 2
(
V δ
1 D1 + V δ

0

)(
∂σ +

V ′
3
ε

σ̄′
∂V ε

3
+
V ′
2
ε

σ̄′
∂V ε

2

)
P ε
1,0

−
(
Aε

2D
2
1D2 +Aε

1D1D2 +Aε
0D2 +Aε

D
2
2

)
PBS − (V ε

3 D1D2 + V ε
2 D2)P

ε
1,0

− 2
(
V δ
1 D1 + V δ

0

)
(
∂σ +

V ′
1
δ

σ̄′
∂V δ

1

+
V ′
0
δ

σ̄′
∂V δ

0

)
P δ
0,1 −

(
Bδ

2∂
2
σσ +Bδ

1∂σ
)
PBS .

Here our notation is V ′
i
ε
(z) = ∂zV

ε
i (z), and similarly V ′

i
δ
. Since P1,0 is linear in V3 and V2 and P0,1 is linear

in V1 and V0, neither ∂V ε
3
P1,0, ∂V ε

2
P1,0, ∂V δ

1

P0,1 nor ∂V δ
0

P0,1 contain any of the Vi’s (that is, they are order

one quantities).
As such, the group parameters that appear in the source term Sε,δ and therefore, in the price approxi-

mation (2.40) are

V ε
3 , V

ε
2 , V

δ
1 , V

δ
0 , C

ε,δ
2 , Cε,δ

1 , Cε,δ
0 , Cε,δ, Aε

2, A
ε
1, A

ε
0, A

ε, Bδ
2 , B

δ
1 ,
V ′
3
ε

σ̄′
,
V ′
2
ε

σ̄′
,
V ′
1
δ

σ̄′
,
V ′
0
δ

σ̄′
. (2.45)

These 18 parameters, which move with the slow volatility factor Zt, as well as φε(y, z) := ε φ(y, z) needed
in (2.40), can be obtained by calibrating the class of multiscale stochastic volatility models to the implied
volatility surface of (liquid) European options, as described the Section 3.2. Note from (2.44) that the V ε

i

are order
√
ε, the V δ

i order
√
δ and that they appeared in the first order asymptotic theory in [7]. The

new parameters (Aε
i , B

δ
i , C

ε,δ
i ) come from the order ε, order δ and order

√
εδ terms in the the second order

expansion respectively.

2.7.1 Parameter Reduction

The group parameters in (2.45) depend on the current level z of the slow volatility factor and, in the case of
φε, on the fast factor too. In order to calibrate completely from the implied volatility surface and not use
historical returns data to estimate σ̄(z), we replace it by a quantity σ∗(z) which absorbs the term V ε

2 (z). In
so doing, there is now one less parameter, and we show that the accuracy of the second order approximation
is unchanged. The accuracy of our approximation is given in Theorem 2.4 and the following Proposition
refers to it.

Proposition 2.5 (Parameter Reduction). Without loss of accuracy, in the pricing equations and formulas

obtained in this section, we can replace σ̄(z) by σ∗(z) defined by

σ∗(z) :=
√
σ̄(z)2 + 2V ε

2 (z), (2.46)

replace P0,0 by the Black-Scholes price at volatility σ∗(z), and remove the V2-dependent terms.

Proof. The proof is in appendix E.
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2.7.2 Pricing Exotic Options

It is important to remember that the formulas given for the Pi,j ’s in Theorem 2.3 are valid for European

options only. This is because Theorem 2.3 relies on the Vega-Gamma relationship (C.1), which does not hold
in general for exotic options. Nevertheless, the PDEs derived in (2.41) are valid for many path-dependent
options with appropriate boundary conditions (e.g. barrier options). The approximate price of a path-
dependent option can by found by numerically solving an inhomogeneous PDE (with additional boundary
conditions), the main point being that the parameters involved are the same as those appearing in European
option prices used for calibration as described in Section 3.2. A full development for particular contracts is
outside the scope of this paper.

3 Asymptotics for Implied Volatilities and Calibration

In what follows, we give the second order expansion of Black-Scholes implied volatility, which is obtained by
inverting the Black-Scholes formula for European call options with respect to the volatility parameter.

3.1 Implied Volatility Expansion

In practice, it is common to find the parameters of a pricing model by calibrating the model to the implied
volatility surface of liquid European calls and puts, rather than by calibrating to call and put prices directly.
To this end, we seek an implied volatility expansion

Iε,δ =
∑

j≥0

∑

i≥0

√
ε
i√
δ
j
Ii,j such that P ε,δ = PBS

(
Iε,δ
)
.

Performing a Taylor expansion of PBS(I
ε,δ) about I0,0 and rearranging terms yields

P0,0 +
√
ε P1,0 +

√
δ P0,1 +

√
ε δ P1,1 + ε P2,0 + δ P0,2 + · · ·

= PBS(I0,0 +
√
ε I1,0 +

√
δ I0,1 +

√
ε δ I1,1 + ε I2,0 + δ I0,2 + · · · )

= PBS(I0,0) +
(√

ε I1,0 +
√
δ I0,1 + · · ·

)
∂σPBS(I0,0)

+
1

2

(√
ε I1,0 +

√
δ I0,1 + · · ·

)2
∂2σσPBS(I0,0) + · · ·

= PBS(I0,0) +
√
ε I1,0∂σPBS(I0,0) +

√
δ I0,1∂σPBS(I0)

+
√
ε δ
(
I1,0I0,1∂

2
σσPBS(I0,0) + I1,1∂σPBS(I0,0)

)

+ ε

(
1

2
I21,0∂

2
σσPBS(I0,0) + I2,0∂σPBS(I0,0)

)

+ δ

(
1

2
I20,1∂

2
σσPBS(I0,0) + I0,2∂σPBS(I0,0)

)
+ · · · . (3.1)

Equating terms in (3.1) of like powers of
√
ε and

√
δ, and using P0,0 = PBS(σ̄) we find

O(1) : I0,0 = σ̄, O(ε) : I2,0 =
P2,0

∂σP0,0
− 1

2
I21,0

∂2σσP0,0

∂σP0,0
,

O(
√
ε) : I1,0 =

P1,0

∂σP0,0
, O(δ) : I0,2 =

P0,2

∂σP0,0
− 1

2
I20,1

∂2σσP0,0

∂σP0,0
,

O(
√
δ) : I0,1 =

P0,1

∂σP0,0
, O(

√
εδ) : I1,1 =

P1,1

∂σP0,0
− I1,0I0,1

∂2σσP0,0

∂σP0,0
.





(3.2)
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For a European call or put option with strike price K and time to maturity τ it is convenient to express the
Ii,j ’s as functions of forward log-moneyness

d := log (K/xerτ ) (forward log-moneyness).

Setting the payoff function h(x) = (x −K)+ for a call option and using the expressions given for {Pi,j} in
Theorem 2.3, the Ii,j ’s in (3.2) become

O(1) : I0,0 = σ̄,

O(
√
ε) : I1,0 = V2

1

σ̄
+ V3

(
1

2 σ̄
+

d

τ σ̄3

)
,

O(
√
δ) : I0,1 = V0 τ + V1

(
τ

2
+

d

σ̄2

)
,

O(ε) : I2,0 =
−φ
2 τ σ̄

+ V 2
2

(
− 1

2 σ̄3

)
+ V2V3

(
− 3d

τ σ̄5
− 1

2 σ̄3

)

+ V 2
3

(
− 3d2

τ2 σ̄7
+

3

2τ σ̄5
− 3d

2τ σ̄5

)

+A

(
d2

τ2 σ̄5
− 1

τ σ̄3
− 1

4 σ̄

)
+A0

(
1

σ̄

)
+A1

(
d

τ σ̄3
+

1

2 σ̄

)

+A2

(
d2

τ2 σ̄5
− 1

τ σ̄3
+

d

τ σ̄3
+

1

4 σ̄

)
,

O(δ) : I0,2 = V 2
0

(
τ2

6 σ̄

)
+ V0V1

(
−5 d τ

3 σ̄3
+
τ2

6 σ̄

)
+ V 2

1

(
− 7 d2

3 σ̄5
+

5τ

6 σ̄3
− 5 d τ

6 σ̄3
+
τ2

6 σ̄

)

+ V0
V ′
0

σ̄′

(
2τ2

3

)
+ V0

V ′
1

σ̄′

(
τ2

3
+

2 d τ

3 σ̄2

)
+ V1

V ′
0

σ̄′

(
τ2

3
+

2 d τ

3 σ̄2

)

+ V1
V ′
1

σ̄′

(
τ2

6
+

2 d2

3 σ̄4
− 2τ

3 σ̄2
+

2d τ

3 σ̄2

)
+B2

(
d2

3 σ̄3
+

τ

6 σ̄
− τ2 σ̄

12

)
+B1

(τ
2

)
,

O(
√
ε δ) : I1,1 = V0V2

(
− τ

σ̄2

)
+ V0V3

(
−3 d

σ̄4
− τ

2 σ̄2

)

+ V1V2

(
−3 d

σ̄4
− τ

2 σ̄2

)
+ V1V3

(
− 6 d2

τ σ̄6
+

3

σ̄4
− 3 d

σ̄4

)

+ V0
V ′
2

σ̄′

( τ
σ̄

)
+ V0

V ′
3

σ̄′

(
d

σ̄3
+

τ

2 σ̄

)
+ V1

V ′
2

σ̄′

(
d

σ̄3
+

τ

2 σ̄

)

+ V1
V ′
3

σ̄′

(
d2

τ σ̄5
− 1

σ̄3
+

d

σ̄3
+

τ

4 σ̄

)
+ C2

(
τ

8
+

d2

2τ σ̄4
− 1

2 σ̄2
+

d

2 σ̄2

)

+ C1

(
τ

4
+

d

2 σ̄2

)
+ C0

(τ
2

)
+ C

(
−τ
8
+

d2

2τ σ̄4
− 1

2 σ̄2

)
.





(3.3)

Observe that this second order expansion produces an implied volatility curve which is quadratic in
log-moneyness d and therefore accounts for the slight turn in the skew that is most prominent in shorter
maturity options data, as we will see in Figure 1. The first order approximation derived in [7] is linear
in d and therefore only accounted for the skew effect. Note also that the parameter reduction outlined in
Proposition 2.5 can be applied to this implied volatility expansion as well (σ̄ replaced by σ∗ and V2-terms
removed), and this will be used in the calibration in the next section. We also remark that the formal second
order expansion for the case of a single slow volatility factor had previously been considered in [9], [18] and
[20], for instance.
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3.2 Calibration

In this section we discuss how the parameters (2.45), which are needed to price exotic options as discussed
at the end of Section 2.7, can be obtained by calibrating the multiscale class of models to liquid European
option data. We define

Ĩε,δ := I0,0 +
√
ε I1,0 +

√
δ I0,1 +

√
ε δ I1,1 + ε I2,0 + δ I0,2.

Using (3.3) and the parameter reduction described in Proposition 2.5, we have

Ĩε,δ =

(
1

τ
k + l + τ m+ τ2 n

)
+
d

τ

(
p+ τ q + τ2 s

)
+
d2

τ2
(
u+ τ v + τ2 w

)
, (3.4)

where

O(1/τ) : k =
3(V ε

3 )
2

2(σ∗)5
− Aε

2

(σ∗)3
− Aε

(σ∗)3
− φε

2σ∗
,

O(1) : l =
3V δ

1 V
ε
3

(σ∗)4
− Cε,δ

2

2(σ∗)2
− Cε,δ

2(σ∗)2

+
Aε

0

σ∗
+
Aε

1

2σ∗
+

Aε
2

4σ∗
− Aε

4σ∗
− V δ

1 V
′
3
ε

(σ∗)3σ∗′
+ σ∗ +

V ε
3

2σ∗
,

O(τ) : m =
Bδ

1

2
+
Cε,δ

0

2
+
Cε,δ

1

4
+
Cε,δ

2

8
− Cε,δ

8
+

5(V δ
1 )

2

6(σ∗)3

− V δ
0 V

ε
3

2(σ∗)2
+
Bδ

2

6σ∗
− 2V δ

1 V
′
1
δ

3(σ∗)2σ∗′
+
V δ
0 V

′
3
ε

2σ∗σ∗′
+
V δ
1 V

′
3
ε

4σ∗σ∗′
+ V δ

0 +
V δ
1

2
,

O(τ2) : n =
(V δ

0 )
2

6σ∗
+
V δ
0 V

δ
1

6σ∗
+

(V δ
1 )

2

6σ∗
− Bδ

2σ
∗

12
+

2V δ
0 V

′
0
δ

3σ∗′

+
V ′
0
δV δ

1

3σ∗′
+
V δ
0 V

′
1
δ

3σ∗′
+
V δ
1 V

′
1
δ

6σ∗′
,

O(d/τ) : p = −3(V ε
3 )

2

2(σ∗)5
+

Aε
1

(σ∗)3
+

Aε
2

(σ∗)3
+

V ε
3

(σ∗)3
,

O(d) : q = −3V δ
0 V

ε
3

(σ∗)4
− 3V δ

1 V
ε
3

(σ∗)4
+

Cε,δ
1

2(σ∗)2
+

Cε,δ
2

2(σ∗)2

+
V δ
0 V

′
3
ε

(σ∗)3σ∗′
+

V δ
1 V

′
3
ε

(σ∗)3σ∗′
+

V δ
1

(σ∗)2
,

O(d τ) : s = −5V δ
0 V

δ
1

3(σ∗)3
− 5(V δ

1 )
2

6(σ∗)3
+

2V ′
0
δ
V δ
1

3(σ∗)2σ∗′
+

2V δ
0 V

′
1
δ

3(σ∗)2σ∗′
+

2V δ
1 V

′
1
δ

3(σ∗)2σ∗′
,

O(d2/τ2) : u = −3(V ε
3 )

2

(σ∗)7
+

Aε
2

(σ∗)5
+

Aε

(σ∗)5
,

O(d2/τ) : v = −6V δ
1 V

ε
3

(σ∗)6
+

Cε,δ
2

2(σ∗)4
+

Cε,δ

2(σ∗)4
+

V δ
1 V

′
3
ε

(σ∗)5σ∗′
,

O(d2) : w = −7(V δ
1 )

2

3(σ∗)5
+

Bδ
2

3(σ∗)3
+

2V δ
1 V

′
1
δ

3(σ∗)4σ∗′
.





(3.5)

In total, we have ten “basis functions” with which to fit the empirically observed implied volatility surface:

{
1

τ
, 1, τ, τ2,

d

τ
, d, dτ,

d2

τ2
,
d2

τ
, d2
}
.

14



It will be helpful to define

Θ := {k, l,m, n, p, q, s, u, v, w},

Φ := {σ∗, V ε
3 , V

δ
1 , V

δ
0 , C

ε,δ
2 , Cε,δ

1 , Cε,δ
0 , Cε,δ, Aε

2, A
ε
1, A

ε
0, A

ε, Bδ
2 , B

δ
1 ,
V ′
3
ε

σ̄′
,
V ′
1
δ

σ̄′
,
V ′
0
δ

σ̄′
, φε}.

We let I(τ, d) be the implied volatility of a European call option with time to maturity τ and forward log-

moneyness d as observed from option prices on the market. We let Îε,δ(τ, d; Θ) be the implied volatility of
a European call as calculated using (3.4). The calibration procedure consists of the following steps:

1. Find Θ∗ such that

min
Θ

∑

i

∑

j

(
I(τi, dj)− Îε,δ(τi, dj ; Θ)

)2
=
∑

i

∑

j

(
I(τi, dj)− Îε,δ(τi, dj ; Θ

∗)
)2
,

where the double sum runs over all maturities τi and strikes Kj (corresponding to forward log-
moneyness dj) for which a call or put is liquidly traded. This is the least-squares fit of formula
(3.4) resulting in estimated k, l,m, · · · , w.

2. Next the ten constraints of equation (3.5) are used to find the minimal L2 set of parameters Φ∗. That
is, we find Φ∗ such that

min
Φ∈I

‖Φ‖2 = ‖Φ∗‖2 , I = {Φ : equation (3.5) holds with Θ = Θ∗} .

We emphasize that our calibration procedure encompasses all maturities, that is we do not fit maturity-by-
maturity.

3.3 Data

We perform the described calibration procedure on European call and put options on the S&P500 index on
two separate dates, one pre-crisis on October 19, 2006, and one post-crisis on March 18, 2010. In Figure 1
we plot the implied volatility fit from October 19, 2006. The parameters obtained from the above calibration
procedure are

σ∗ = 0.2051, V ε
3 = −0.0034, V δ

1 = 0.0023, V δ
0 = −0.0064, Cε,δ

2 = −0.0073, Cε,δ
1 = −0.0171,

Cε,δ
0 = 0.0183, Cε,δ = 0.0047, Aε

2 = −0.0002, Aε
1 = 0.0038, Aε

0 = −0.0183, Aε = 0.0011,

Bδ
2 = 0.0080, Bδ

1 = 0.0183,
V ′
3
ε

σ̄′
= 0.0146,

V ′
1
δ

σ̄′
= −0.3104,

V ′
0
δ

σ̄′
= 0.9856, φε = −0.0181.

In Figure 2 we plot the implied volatility fit from March 18, 2010. The parameters obtained from the above
calibration procedure are

σ∗ = 0.2269, V ε
3 = −0.0062, V δ

1 = −0.0026, V δ
0 = 0.0208, Cε,δ

2 = −0.0031, Cε,δ
1 = −.00034,

Cε,δ
0 = −0.0035, Cε,δ = 0.0033, Aε

2 = 0.0034, Aε
1 = 0.0034, Aε

0 = −0.0004, Aε = −0.0012,

Bδ
2 = 0.0012, Bδ

1 = −0.0035,
V ′
3
ε

σ̄′
= −0.1590,

V ′
1
δ

σ̄′
= 0.0914,

V ′
0
δ

σ̄′
= −0.0729, φε = −0.0443.

Notice that, in both cases, the obtained parameters other than σ∗ are small, as expected in the regime of
validity of our expansion (i.e., small ε and small δ).
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Figure 1: Implied volatility fit to S&P 500 index options on October 19, 2006. Note that this is the result of a

single calibration to all maturities and not a maturity-by-maturity calibration. Each panel shows the DTM=days to

maturity.
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Figure 2: Implied volatility fit to S&P 500 index options on March 18, 2010. Note that this is the result of a single

calibration to all maturities and not a maturity-by-maturity calibration.
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4 Concluding Remarks

We have derived a second order asymptotic approximation for European options under multiscale stochastic
volatility models with fast and slow factors. Proof of convergence requires a terminal layer analysis that
is developed probabilistically, in contrast to the techniques of matched asymptotic expansions that are
more common in fluid mechanics. The price approximation is translated to an implied volatility surface
approximation which is quadratic in log-moneyness and highly nontrivial in the term structure direction.

In applying asymptotic approximations, two questions are crucial: how is it calibrated to data, and how
can the recovered (partial) information be used. Here we have shown that the complicated second order
formulas fit the data well across strikes and maturities (Figures 1 and 2). Moreover, the extracted parameters
are small when they should be small in the regime of the asymptotic analysis (Section 3.3). These parameters
can then be used to value exotic options such as barrier options, that are characterized by the same PDE
but with different boundary conditions, to the same order of accuracy, as discussed in Section 2.7.

It remains to investigate stability of the calibrated parameters over time, that is, to show empirically all
but one of the parameters vary like the slow volatility factor, and the remaining one more rapidly. This
detailed data work is in preparation.

A Proof of Proposition 2.1

The goal is to compute 〈L2〉F2,0. Starting from the expression (2.21) for P2,0, applying the operator L2 and
averaging, we obtain:

〈L2P2,0〉 =
〈
L2

(
−1

2
φD2P0,0 + F2,0

)〉
= −1

2
〈φL2〉D2P0,0 + 〈L2〉F2,0

= −1

2

(
〈φ〉 (∂t − r) +

1

2

〈
φf2

〉
D2

)
D2P0,0 + 〈L2〉F2,0

= −1

2

(
〈φ〉
(
∂t − r +

1

2

〈
f2
〉
D2

)
+

1

2

( 〈
φf2

〉
− 〈φ〉

〈
f2
〉 )

D2

)
D2P0,0 + 〈L2〉F2,0

= −
✘✘✘✘✘✘✘✘1

2
〈φ〉 〈L2〉D2P0,0 −

1

4

( 〈
φf2

〉
− 〈φ〉

〈
f2
〉 )

D
2
2P0,0 + 〈L2〉F2,0

= AD
2
2 P0,0 + 〈L2〉F2,0, (A.1)

where A(z) is given in Proposition 2.1.
On the other hand, by (2.16), 〈L2P2,0〉 = −〈L1P3,0〉, and therefore we compute P3,0. From (2.10), (2.15),

(2.20), (2.21), and the definitions of L1 and L2, we express L0P3,0 as follows

L0P3,0 = − (L1P2,0 + L2P1,0)

= − (L1P2,0 − 〈L1P2,0〉)− (L2 − 〈L2〉)P1,0

= −L1

(
−1

2
φD2P0,0 + F2,0

)
+

〈
L1

(
−1

2
φD2P0,0 + F2,0

)〉
−
(
1

2

(
f2 −

〈
f2
〉)

D2P1,0

)

= −
(
−1

2
ρxy

(
βf∂yφ− 〈βf∂yφ〉

)
D1D2 +

1

2

(
βΛ∂yφ− 〈βΛ∂yφ〉

)
D2

)
P0,0 −

(
1

2
L0φ

)
D2P1,0.

Using the functions ψ1 and ψ2 defined in (2.26), the solution to the previous equation is given by

P3,0 =
1

2
ρxy ψ1D1D2P0,0 −

1

2
ψ2D2P0,0 −

1

2
φD2P1,0 + F3,0,
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where F3,0(t, x, z) is independent of y. Now, we can compute 〈L1P3,0〉:

〈L1P3,0〉 =
〈(

ρxyβfD1 − βΛ
)
∂y

(
1

2
ρxy ψ1D1D2P0,0 −

1

2
ψ2D2P0,0 −

1

2
φD2P1,0

)〉

=
1

2
ρ2xy 〈βf∂yψ1〉D2

1D2P0,0 −
1

2
ρxy 〈βΛ∂yψ1〉D1D2P0,0 −

1

2
ρxy 〈βf∂yψ2〉D1D2P0,0

+
1

2
〈βΛ∂yψ2〉D2P0,0 −

1

2
ρxy 〈βf∂yφ〉D1D2P1,0 +

1

2
〈βΛ∂yφ〉D2P1,0

=
(
A2D

2
1D2 +A1D1D2 +A0D2

)
P0,0 +

(
V3D1D2 + V2D2

)
P1,0, (A.2)

where A2(z), A1(z) and A0(z) are given in Proposition 2.1. Inserting (A.1) and (A.2) into (2.16) yields the
following PDE for F2,0

〈L2〉F2,0 = −AP0,0 − VP1,0,

which agrees with (2.25). Lastly, the terminal condition F2,0(T, x, z) = 0 is imposed by averaging (2.21),
and using (2.22) and (2.23):

〈P2,0(T, x, ·, z)〉 = −1

2✚
✚〈φ〉D2P0,0(T, x, z) + F2,0(T, x, z) = F2,0(T, x, z) = 0.

B Proof of Proposition 2.2

In order to compute 〈L1P2,1〉 we first compute P2,1. Using (2.27), (2.29) and the definition (2.35) of ψ3 and
ψ4, we find

L0P2,1 = −L2P0,1 −M1P0,0

= − (L2 − 〈L2〉)P0,1 − (M1 − 〈M1〉)P0,0

= −1

2

(
f2 −

〈
f2
〉)

D2P0,1 − ρxzg (f − 〈f〉)D1∂zP0,0 + g (Γ− 〈Γ〉) ∂zP0,0

= −1

2
L0φD2P0,1 − ρxzgL0ψ3D1∂zP0,0 + gL0ψ4∂zP0,0.

Thus, P2,1 is given by

P2,1 = −1

2
φD2P0,1 − ρxzgψ3D1∂zP0,0 + gψ4∂zP0,0 + F2,1(t, x, z), (B.1)

where F2,1(t, x, z) does not depend on y. Next, using expression (B.1) for P2,1 we find

〈L1P2,1〉 =
〈(

ρxyβfD1 − βΛ
)
∂y

(
−1

2
φD2P0,1

)〉

+
〈(
ρxyβfD1 − βΛ

)
∂y

(
− ρxzg ψ3D1∂zP0,0

)〉

+
〈(
ρxyβfD1 − βΛ

)
∂y

(
g ψ4∂zP0,0

)〉

= −1

2
ρxy 〈βf∂yφ〉D1D2P0,1 +

1

2
〈βΛ∂yφ〉D2P0,1

− ρxyρxzg 〈βf∂yψ3〉D2
1∂zP0,0 + ρxzg 〈βΛ∂yψ3〉D1∂zP0,0

+ ρxyg 〈βf∂yψ4〉D1∂zP0,0 − g 〈βΛ∂yψ4〉 ∂zP0,0

= (V3D1D2 + V2D2)P0,1 +
1

σ̄′

(
C2D

2
1 + C1D1 + C0

)
∂zP0,0,
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which agrees with (2.33). Next, using expression (2.21) for P2,0 we find

〈M3P2,0〉 =
〈(

ρyzβ(y)g(z)∂
2
yz

)(
−1

2
φD2P0,0 + F2,0

)〉

= −1

2
ρyzg 〈β∂yφ〉D2∂zP0,0

=
1

σ̄′
CD2∂zP0,0,

which agrees with (2.34).

C Proof of Proposition 2.3

As previously noted, the operator 〈L2〉, given by (2.17), is the Black-Scholes pricing operator LBS , where the
Black-Scholes volatility σ has been replaced by an average level of volatility σ̄, and so that P0,0 = PBS(σ̄(z)).
In order to derive expressions for the higher order {Pi,j , 1 ≤ i+ j ≤ 2}, we need the following two lemmas.
Recall also the notation τ = T − t.

Lemma C.1. For European options,

∂σPBS(σ) = τσD2PBS(σ). (C.1)

Proof. This is the classical relation between Vega and Gamma for plain vanilla European options. It is easily
obtained by differentiating the Black-Scholes PDE with respect to σ to obtain a Black-Scholes PDE with
source for the Vega which in turn can be solved explicitly in terms of the Gamma.

Using Lemma C.1 and the fact that the logarithmic derivative operators Dk in (2.3) commute (DkDm =
DmDk), which implies that 〈L2〉 and any Dk commute (〈L2〉Dk = Dk 〈L2〉), one can show:

Lemma C.2. For European options, and positive integers k and n,

〈L2〉
τn+1

n+ 1
P ({Dk})PBS(σ̄(z)) = −τn P ({Dk})PBS(σ̄(z)),

〈L2〉
τn+1

n+ 2
P ({Dk}) ∂σ PBS(σ̄(z)) = −τn P ({Dk}) ∂σ PBS(σ̄(z)),

〈L2〉
τn+1

n+ 3
P ({Dk})

(
∂2σσ +

1

σ̄ (n+ 2)
∂σ

)
PBS(σ̄(z)) = −τn P ({Dk}) ∂2σσ PBS(σ̄(z)),

where P ({Dk}) is some polynomial of D1,D2, · · · ,Dk.

Proof. The proof is a straightforward computation. In showing the second and third relations, the ∂σ partial
derivatives acting on PBS are first converted into D2 using Lemma C.1 which now commute with any Dk

operators and 〈L2〉. The final step uses that 〈L2〉PBS(σ̄(z)) = 0.

Using Lemmas C.1 and C.2, a direct computation shows that the {Pi,j} of Theorem 2.3 satisfy the PDEs
of (2.41) and the appropriate terminal conditions.

D Proof of the Accuracy Theorem 2.4

In what follows, we will make use several times of the fact that P0,0 and its derivatives DkP0,0 are bounded
in x (because of our smoothness and boundedness assumption on the payoff function h and its derivatives).
We will also use the fact that Y and Z have moments of all orders uniformly bounded in ε and δ (thanks
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to the assumptions made on Y (1) and Z(1) in section 2.6). The proof of this can be found following Lemma
4.1 of [8].

We begin the proof by recalling our price approximation P̃ ε,δ from (2.40):

P ε,δ ≈ P̃ ε,δ = P0,0 +
√
ε P1,0 +

√
δ P0,1 +

√
ε δ P1,1 + ε P2,0 + δ P0,2,

where {Pi,j , i + j ≤ 2} are given in Theorem 2.3. Since the singular perturbation argument involves terms
with higher order in ε, we introduce

P̂ ε,δ = P̃ ε,δ + ε3/2P3,0 + ε2P4,0 + ε
√
δ P2,1 + ε3/2

√
δ P3,1,

and we observe that

P̂ ε,δ = P̃ ε,δ + O(ε3/2 + ε
√
δ).

Next, we define the residual

Rε,δ := P ε,δ − P̂ ε,δ,

and therefore, the proof consists of showing that Rε,δ = O(ε3/2 + ε
√
δ + δ

√
ε).

From the equations (2.2), (2.9), (2.10), (2.11), (2.27), (2.28), and (2.37) satisfied by P ε,δ and {Pi,j , i ≤
4, j ≤ 2, i+ j ≤ 4}, we deduce that the residual Rε,δ satisfies the following PDE:

L
ε,δRε,δ + O(ε3/2 + ε

√
δ + δ

√
ε) = 0. (D.1)

From the terminal conditions for {Pi,j , i+ j ≤ 2}, we deduce the terminal condition for the residual:

Rε,δ(T, x, y, z) = −εP2,0(T, x, y, z) + O(ε3/2 + ε
√
δ + δ

√
ε), (D.2)

where it is important to note that the non-vanishing terminal condition P2,0(T, x, y, z) plays a particular role
at the ε order. The probabilistic representation of Rε,δ, solution to the Cauchy problem (D.1)-(D.2), is

Rε,δ(t, x, y, z) = −ε Ẽt,x,y,z

[
e−r(T−t)P2,0(T,XT , YT , ZT )

]
+ O(ε3/2 + ε

√
δ + δ

√
ε),

where Ẽt,x,y,z denotes expectation under the (ε, δ)-dependent dynamics (2.1) starting at time t < T from
(x, y, z). From the expression P2,0 = − 1

2φD2P0,0+F2,0 in (2.21) and the terminal condition F2,0(T, x, z) = 0
in (2.25), we deduce

Rε,δ(t, x, y, z) =
ε

2
Ẽt,x,y,z

[
e−r(T−t)φ(YT , ZT )D2P0,0(T,XT , ZT )

]
+ O(ε3/2 + ε

√
δ + δ

√
ε).

As δ → 0, the process Z converges to the constant process z, and as ε → 0, the process X converges
in distribution to a geometric Brownian motion X with volatility σ̄(z) and independent of the Y process.
Therefore, up to an error term of order O(ε3/2 + ε

√
δ + δ

√
ε), we deduce that

Rε,δ(t, x, y, z) = εC Ẽt,y [φ(YT , z)] + O(ε3/2 + ε
√
δ + δ

√
ε), (D.3)

where the constant

C := Et,x

[
e−r(T−t)

D2P0,0(T,XT , z)
]
,

does not depend on (ε, δ).

If Λ = 0, that is, if the process Y had infinitesimal generator L0 under the pricing measure P̃, then due
to the ergodic theorem, Ẽt,y [φ(YT , z)] would converge to zero exponentially fast as ε → 0 since 〈φ〉 = 0.
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This is exactly where we see that our choice of terminal condition for P2,0 was necessary because if 〈φ〉 6= 0,

then the residual would be of order ε. However, under the pricing measure P̃, the process Y does not have
generator L0 due to the presence of the possibly nonzero market price of volatility risk Λ(y, z) and therefore,

we need to analyze the behavior as ε→ 0 of Ẽt,y [φ(YT , z)] for Λ 6= 0.

Without loss of generality we can assume t = 0. By rescaling time it is enough to consider Ẽ
[
φ(YT/ε, z)

]

under the autonomous dynamics

dYt =
(
α(Yt)−

√
εβ(Yt)Λ(Yt, z)

)
dt+ β(Yt)dW̃

y
t , Y0 = y. (D.4)

The process Y (D.4) admits an invariant distribution Πε with density

πε(y) =
Jε

β2(y)
exp

(
2

∫ y

0

α(u)−√
εβ(u)Λ(u, z)

β2(u)
du

)
,

where Jε is a normalization factor.
From the ergodic property of Y and the assumption of a positive spectral gap, for ε small enough, one

can find positive constants C1 and λ such that

|Ẽ[φ(YT/ε, z)]− 〈φ〉ε | ≤ C1e
−λT/ε,

where 〈·〉ε denotes averaging with respect to Πε. Now, expanding πε (including Jε), we derive for any
g ∈ L1(Πε)

〈g〉ε = 〈g〉 − 2
√
ε

〈(∫ ·

0

Λ(u, z)

β(u)
du

)
(g(·)− 〈g〉)

〉
+ · · · . (D.5)

Hence, using the fact that 〈φ〉 = 0 we obtain that there is a constant C2 such that

|Ẽ[φ(YT/ε, z)]| ≤ C2

√
ε.

We then conclude from (D.3) that Rε,δ is of O(ε3/2 + ε
√
δ + δ

√
ε).

E Proof of Proposition 2.5

Define P ∗
i,j as the solutions to

O(1) : 〈L∗
2〉P ∗

0,0 = 0, P ∗
0,0(T, x, z) = h(x),

O(
√
ε) : 〈L∗

2〉P ∗
1,0 = −V

∗P ∗
0,0, P ∗

1,0(T, x, z) = 0,

O(
√
δ) : 〈L∗

2〉P ∗
0,1 = −〈M1〉P ∗

0,0, P ∗
0,1(T, x, z) = 0,

O(ε) : P ∗
2,0 = −1

2
φD2P

∗
0,0 + F ∗

2,0,

〈L∗
2〉F ∗

2,0 = −AP ∗
0,0 − V

∗ P ∗
1,0, F ∗

2,0(T, x, z) = 0,

O(δ) : 〈L∗
2〉P ∗

0,2 = −〈M1〉P ∗
0,1 −M2P

∗
0,0, P ∗

0,2(T, x, z) = 0,

O(
√
ε δ) : 〈L2〉P ∗

1,1 = −V
∗ P ∗

0,1 −
1

σ̄′
C ∂zP

∗
0,0 − 〈M1〉P ∗

1,0, P ∗
1,1(T, x, z) = 0,





where

〈L∗
2〉 := 〈L2〉+

√
εV2D2, V

∗ := V− V2D2.

These correspond to terms in (2.41) of the asymptotic approximation to second order where σ̄(z) is replaced
by σ∗(z) defined in (2.46), and the terms containing V2 are removed. We show that these changes alter the
accuracy of the approximation only at higher order.
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First, we note that
(
P0,0 − P ∗

0,0

)
= O(

√
ε) since

〈L2〉
(
P0,0 − P ∗

0,0

)
=

√
ε V2D2P

∗
0,0, P0,0(T, x, z)− P ∗

0,0(T, x, z) = 0.

Next, we define Eε,δ
1 (t, x, z) by

Eε,δ
1 :=

(
P0,0 +

√
εP1,0 +

√
δP0,1

)
−
(
P ∗
0,0 +

√
εP ∗

1,0 +
√
δP ∗

0,1

)
,

the difference in the first order approximations. Note that Eε,δ
1 (T, x, z) = 0 and

〈L2〉Eε,δ
1 =

[√
ε (V∗ + V2D2) +

√
δ 〈M1〉

] (
P ∗
0,0 − P0,0

)
+ εV2D2P

∗
1,0 +

√
εδV2D2P

∗
0,1.

Thus, we conclude that Eε,δ
1 = O(ε+

√
εδ).

Similarly incorporating the order ε term, we define Eε
2(t, x, y, z) by

Eε
2 :=

(
P0,0 +

√
εP1,0 + εP2,0

)
−
(
P ∗
0,0 +

√
εP ∗

1,0 + εP ∗
2,0

)
.

From equation (D.5) and by using D2

(
P0,0 − P ∗

0,0

)
= O(

√
ε) one can show that Eε

2(T, x, y, z) = O(ε3/2). We
then compute

〈L2〉Eε
2 =

√
εV
[(
P ∗
0,0 +

√
εP ∗

1,0

)
−
(
P0,0 +

√
εP1,0

)]
+ εA

(
P ∗
0,0 − P0,0

)
+ ε3/2V2D2P

∗
2,0.

Incorporating the order
√
εδ term, we define Eε

3(t, x, z) by

Eε
3 :=

(
P0,1 +

√
εP1,1

)
−
(
P ∗
0,1 +

√
εP ∗

1,1

)
.

Note that Eε
3(T, x, z) = 0 and

〈L2〉Eε
3 = 〈M1〉

[(
P ∗
0,0 +

√
εP ∗

1,0

)
−
(
P0,0 +

√
εP ∗

1,0

)]
+
√
ε
1

σ̄′
C∂z

(
P ∗
0,0 − P0,0

)
+
√
εV
(
P ∗
0,1 − P0,1

)
.

Now define Eε
4(t, x, z) by

Eε
4 := P0,2 − P ∗

0,2.

Note that Eε
4(T, x, z) = 0 and

〈L2〉Eε
4 = 〈M1〉

(
P ∗
0,1 − P0,1

)
+M2

(
P ∗
0,0 − P0,0

)
+
√
εV2D2P

∗
0,2.

Finally,

〈L2〉
(
Eε

2 +
√
δEε

3 + δEε
4

)
=
(√

εV+
√
δ 〈M1〉

)
Eε,δ

1 + ε3/2V2D2P
∗
2,0 +

√
εδV2D2P

∗
0,2

+

(
εA+

√
εδ

1

σ̄′
C∂z

)(
P ∗
0,0 − P0,0

)
+ δM2

(
P ∗
0,0 − P0,0

)
.

Hence, we conclude

Eε
2 +

√
δEε

3 + δEε
4 = O(ε3/2 + ε

√
δ +

√
ε δ).

Thus, in (3.3) we can make the following replacements

σ̄ 7→ σ∗ :=
√
σ̄2 + 2V ε

2 , V2 7→ 0.
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