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Yard-Sale exchange on networks: Wealth sharing and wealth appropriation.
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Yard-Sale (YS) is a stochastic multiplicative wealth-exchange model with two phases: a stable
one where wealth is shared, and an unstable one where wealth condenses onto one agent. YS is
here studied numerically on 1d rings, 2d square lattices, and random graphs with variable average
coordination, comparing its properties with those in mean field (MF). Equilibrium properties in the
stable phase are almost unaffected by the introduction of a network. Measurement of decorrelation
times in the stable phase allow us to determine the critical interface with very good precision, and it
turns out to be the same, for all networks analyzed, as the one that can be analytically derived in MF.
In the unstable phase, on the other hand, dynamical as well as asymptotic properties are strongly
network-dependent. Wealth no longer condenses on a single agent, as in MF, but onto an extensive
set of agents, the properties of which depend on the network. Connections with previous studies
of coalescence of immobile reactants are discussed, and their analytic predictions are successfully
compared with our numerical results.

I. INTRODUCTION

Wealth exchange models, initially proposed to inves-
tigate the emergence of wealth inequality [1] in human
societies, have recently became a subject of intense re-
search [2, 3], following the availability of massive amounts
of statistical data describing commercial exchange, as
well as wealth and income distributions in different con-
texts [4].
Conservative stochastic exchange models were first used
by Angle [5], who considered the spontaneous buildup of
wealth differences among equally able agents. In Angle’s
initial model, wealth concentration is a consequence of
an explicit statistical advantage favoring richer agents. In
other words, the “rich get richer” phenomenon is assumed
explicitely in the exchange rules. Later work showed [6–
10] that an explicit advantage favoring the rich is not
necessary for wealth concentration to appear. Wealth
concentration can develop even if the poor have an ex-
plicit statistical advantage. This rather counterintuitive
result, which has only recently been stressed [9, 10] in
the Econophysics literature, arises when the amount at
stake in each transaction is proportional to the poor-
est agent’s wealth, e.g in the so-called Yard-Sale (YS)
models [6–12]. Yard Sale is an example of Multiplica-
tive Stochastic Exchange, so named because the wealth
of the poorest intervening agent is multiplied by a ran-
dom number after the exchange [10]. Under YS dynam-
ics, in the long run all wealth may end up in the hands
of one lucky agent, even if each pairwise transaction is
statistically biased in favor of the poorest of the two in-
tervening agents. Therefore, favoring the poor may not
suffice to avoid wealth concentration, if the bias in their
favor is not strong enough. Interestingly, YS rules consti-
tute a realistic (although highly simplified) microscopic
model for the wealth exchange process occurring during
commercial interaction, or trade [6, 7, 12]. This sug-
gests that the conditions for the spontaneous creation
of enormous wealth differences for no reason other than
luck [13], are built into the commercial exchange rules,

even if these rules may superficially appear to favor the
poor. Because of the possibility of counterintuitive prop-
erties such as this one, and because of their relevance
for real world commercial exchange, it is clearly of inter-
est to understand the phenomenology of multiplicative
exchange models thoroughly.

In simple versions of YS, pairs of agents ’bet’ for a
fraction f ≤ 1 of the wealth of the poorest of them, who
has a probability p to win the bet. Depending on p and
f , long-term evolution can give rise either to a nontrivial
equilibrium wealth distribution P (w) or to condensation

of the whole wealth in the hands of just one agent. We
call the resulting phases, respectively the wealth-sharing
(or stable) and the wealth-appropriation (or unstable)
phase. To date, most results for this model concern the
full-mixture (or Mean-Field) case. However, commer-
cial exchange is often determined by geographical, so-
cial or other constraints, which are ignored in the fully
mixed approximation. Usually, a given agent can only
exchange wealth with a reduced subset of other agents
who are “close” to him by some measure of distance.
These constraints can be described, at the simplest level,
by means of a network in which nodes i = 1, 2, . . . , N
are economic agents and edges ij represent their possible
interactions. It is reasonable to expect the topological
properties of this network of allowed interactions to have
a strong impact upon the general properties of wealth
exchange processes occurring on them.

Recent work [14–16] explores the network of com-
mercial interactions among nations, or “World Trade
Web” [14]. These studies make it clear that the topol-
ogy of interaction networks is strongly correlated with
the dynamical and static properties of the resulting
wealth exchange process taking place on those net-
works [17]. Numerical investigations [18–20] of the
Bouchaud-Mezard [12, 21] model (BMM) on networks,
find wealth distributions P (w) that change from lognor-
mal to power-law when the connectivity is increased, for
reasons that are easily understood. However, the BMM,
while being an interesting solvable model, considers lin-
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ear exchange (the amount exchanged is proportional to
wealth differences), which is not very realistic [12]. On
the other hand, the BMM includes both exchange and
nonconservative processes (such as investment), and it
is precisely from the interplay between the two that the
network’s connectivity becomes important in the above
studies.

The aim of this work is to analyze network effects
for a realistic model of pure conservative commercial ex-
change. Although real economic systems involve noncon-
servative wealth-modifying processes as well, it is impor-
tant to first understand the properties of the individual
wealth-affecting mechanisms in isolation. In this work,
we study the Yard-Sale (YS) model on networks. Our
network-restricted version of YS is defined as follows: At
each timestep, every agent i interacts (exchanges wealth
according to YS rules) with another agent j that is ran-
domly chosen among its neighbors, i.e. among those
agents j for which a link ij exists. The interaction net-
work is fixed in time. Therefore, a pair of agents not con-
nected by a link will never interact directly. If the coor-
dination number γ is roughly the same for all nodes, each
agent engages in two interactions per timestep, on aver-
age. We consider here one-dimensional chains and two-
dimensional square lattices with nearest-neighbor links
and periodic boundary conditions, as well as Erdős-Rényi
Random Graphs [22] with variable coordination γ. In the
limit γ → (N − 1), the Random Graph becomes a com-
plete graph, and every pair ij has the same probability
to interact. This is the full-mixture case.
We focus on the identification of network-specific effects,
i.e. the extent to which the static and dynamic prop-
erties of the YS model, when implemented on a net-
work, depart from those in full-mixture. Our results show
that, while the stable wealth distribution P (w) is mildly
network-dependent, the location of the interface p∗(f)
that delimits the stable phase remains the same as in
the full-mixture case, for all networks considered in this
work. The critical line p∗(f) is therefore universal, in the
sense defined in the context of the theory of phase tran-
sitions. Dynamical properties, as for example decorrela-
tion times, on the other hand, do depend on the network.
Decorrelation times, which in this case are a measure of
“social mobility” of agents, are found to diverge at the in-
terface with the unstable phase. This divergence is used
to locate the critical line with high precision.

In the unstable, or wealth-appropriation, phase, dy-
namical as well as long-time properties of YS are found
to be strongly network-dependent. The most important
difference with full-mixture is in this case that, on a net-
work, complete condensation in the hands of one agent
no longer occurs. On a network, instead, in the long run
an extensive set of “locally rich” agents (LRA) appears,
each connected only to extremely impoverished agents.
This leads to the effective cessation of all exchange ac-
tivity, a phenomenon similar to dynamical freezing. This
freezing onto a disordered final state is observed in the
whole unstable phase. The properties of the final set

of LRAs, and their final wealth distribution, depend on
the network topology, as well as upon p and f . We dis-
cuss the connections between the appearance of a set
of locally rich agents and the process of coalescence (or
coagulation) of immobile reactants [23–25] on networks.
These connections provide analytical predictions for the
number of LRAs on Random Graphs, which are consis-
tent with our own numerical results. By increasing the
average connectivity γ of a network, the number of LRAs
onto which wealth condenses is decreased, until, in the
limit γ = N − 1, which is the full-mixture case, only one
LRA remains, i.e full condensation is recovered.
This article is organized as follows. Section II recalls

some results for YS in full-mixture. In Section III, numer-
ical results on networks in the stable phase are presented
and compared with full mixture results. In particular,
decorrelation times are used in this section to locate the
interface with high precision. Wealth appropriation dy-
namics on networks is studied in Section IV, where it is
found that wealth condenses onto an extensive number of
locally rich agents (LRA). Their number and wealth dis-
tribution are analyzed in this section. Finally, Section V
offers a discussion of our results.

II. YARD-SALE IN FULL-MIXTURE

Consider wealth exchange for a pair of agents i and
j with wi < wj before interaction, according to the
following YS rules. The agents bet for an amount
f ×MIN(wi, wj) = fwi. The poorest agent (i) wins the
bet with probability p, in which case wi → wi(1 + f)
and wj → wj − fwi, or looses the bet with probability
(1−p), in which case wi → wi(1−f) and wj → wj+fwi.
The wealth of the poor agent is therefore multiplied by a
random factor η, which equals (1 + f) with probability p
and (1−f) with probability (1−p). Long-term evolution
under these rules gives rise either to a stable wealth dis-
tribution P (w) or to condensation, depending on p and
f .
The location of the critical line p∗(f) below which con-

densation occurs can be derived as follows [9, 10]. The
wealth of a very poor agent undergoes a Random Multi-
plicative Process [26] with multiplier η at each timestep.
After a large number t of timesteps, the appropriate cen-
tral tendency estimator for w is its geometric average
e〈lnwt〉 = w0 e−tθ, where

− θ = 〈ln (η)〉 = p ln(1 + f) + (1− p) ln(1− f). (1)

If θ > 0, there will be a systematic transference of
wealth from poorer to richer agents. This is the wealth-
appropriation, or unstable, phase. In this phase, wealth
differences among agents are amplified in time, until the
whole wealth ends up in the hands of a single (in full-
mixture) agent in the long run [9, 10].
If θ < 0, the system is in the wealth-sharing, or stable,

phase. Wealth is transferred from richer to poorer agents,
which tends to “iron out” wealth fluctuations. In the
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long run, the distribution of wealth reaches a nontrivial
equilibrium form P (w), which depends on p and f .
By the heuristic argument above, the critical interface

separating stable and unstable phases is given by θ = 0,
or

p∗(f) =
log(1− f)

log(1− f)− log(1 + f)
. (2)

A more rigorous analysis [9, 10], involving the master
equation for P (w) in the full-mixture approximation,
confirms (2).
Notice that the average return of the poorest agent [10]
is positive whenever p > 1/2. There is thus a region
1/2 < p < p∗(f) where complete wealth concentration
occurs, i.e. poor agents impoverish further, despite the
average return of poor agents being positive.

A. The stable phase

1. Time correlations

A dynamical characterization that is useful in the sta-
ble phase is the relaxation timescale for equilibrium fluc-
tuations. The excess wealth ∆wi(t) = wi(t)− w̄, where
w̄ is the average per agent wealth, gives the amount by
which the wealth wi of an agent i departs from average at
time t. The correlation function C(τ) at time τ , averaged
over T timesteps, is then defined as

C(τ) =
1

NT

T
∑

t=1

N
∑

i=1

∆wi(t)∆wi(t+ τ). (3)

We use here the normalized correlation function
c(τ) = C(τ)/C(0), which equals one for τ = 0 and de-
cays as

c(τ) ∼ c0e
−τ/τ0 (4)

for large τ . A small value of c(τ) means that being richer
or poorer than average at a given time t has little predic-
tive power τ timesteps later. Therefore, c(τ) measures
the “mobility”, in the wealth scale, of a typical agent
over a time horizon of τ timesteps. The timescale τ0
over which c(τ) converges to zero measures the amount
of time needed for full “social mixture” (decorrelation
from initial wealths, or loss of memory). In a statistical
mechanics context, τ0 is the relaxation time needed for
the decay of equilibrium wealth-fluctuations, or “decor-
relation time”. Borrowing from the theory of equilibrium
phase transitions [27, 28], one expects τ0(p, f) to diverge
as the critical interface is approached from above, as

τ0(p, f) ∼ (p− p∗(f))
−z

, (5)

where the dynamical exponent z can be a function of f
eventually. As shown later, the numerical estimation of
τ0(p, f) allows a very precise determination of the loca-
tion p∗(f) of the interface.

B. The unstable phase

1. Ranked wealths

When p < p∗(f), the system is in the unstable phase,
wealth differences are amplified in time and this eventu-
ally leads to condensation in the fully mixed case. In the
whole unstable phase, the decorrelation time τ0 is infi-
nite. Therefore an agents’ position in the wealth scale
becomes frozen, in the long run. In other words, social
mobility is suppressed in the appropriation phase.
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FIG. 1: Time evolution, in the unstable phase, of the rel-
ative wealth possessed by the agent whose rank is R, for
R = 1, 2, 3, 4, 10 and 20 (from top to bottom – full lines)
from simulations in: a) full-mixture and, b) on a 2D square
lattice with periodic boundaries. The dotted lines in a) show
the theoretical prediction (6) for full-mixture. In all cases,
N = 400 agents, f = 0.1, and p = 0.425.

A dynamical analysis of the unstable phase [10] for the
fully-mixed system shows that the typical wealth wR(t) of

an agent with rank R [29] at time t is wR(t) ∼ e−tθ
(R−1)

(N−1) ,
which, after normalizing for a total wealth WT reads

wR(t) = WT
1− e−tθ/N

1− e−tθ
e−tθ (R−1)

(N−1) . (6)
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This expression is valid at long times, when ranks no
longer change as a result of economic exchange. At any
fixed time, the ranked-wealth distribution is thus expo-
nential in rank. Accordingly, the transient wealth distri-
bution is of the form P (w) ∼ 1/w. Fig. 1a compares (6)
with numerical results.

2. Condensation criteria

In numerical simulations, a practical criterion is nec-
essary to define wealth condensation within predefined
limits. We use for this purpose the ratio r(t) =
w(2nd)/w(1st), involving the wealths of the richest and
second-richest agents in the system. This ratio is one
for evenly distributed wealth, and goes to zero when all
wealth condenses onto a single agent. An alternative use-
ful measure of condensation is the normalized second mo-
ment

W2(t) =

∑N
i=1 wi(t)

2

(

∑N
i=1 wi(t)

)2 , (7)

which is similar to the participation ratio in localiza-
tion studies. W2 is of order 1/M if wealth is more or
less evenly distributed among M agents, and goes to one
upon condensation onto a single agent. Therefore, 1/W2

approximates the number of economically active agents
in the system, as much as the inverse participation ratio
estimates the number of sites over which a normal mode,
or an electron, spreads.

3. Condensation timescales

The timescale t0(p, f,N) for convergence towards the
condensed state is an interesting property that quantifies
the dynamics in the unstable phase. This timescale can
be estimated theoretically, in the full-mixture case. Using
(6) one has that r(t) = e−t/t0 , with

t0(p, f,N) ≈
N

θ(p, f)
. (8)

From (1) and (2), we see that θ ∼ p∗(f)− p. Therefore,
the condensation timescale t0 diverges as (p∗(f) − p)−1

on approach to the critical interface.
Simple analysis of (6) shows that wR(t) attains its maxi-
mum value at time TR = t0(p, f,N) log (R/(R− 1)), and
goes exponentially fast to zero afterwards for all R > 1.
This is understood in the following terms. During the
condensation process in the unstable phase, an agent
with rank R systematically extracts wealth from poorer
agents (those with R′ > R) and transfers some of it to
richer agents (those with R′ < R). As long as the wealth
of poorer agents so allows, his balance will be positive,
so his wealth will at first increase. But this increase
happens at the expense of poorer agents, and for times

t ≈ TR these will have exhausted their wealth. Con-
tinued transference of wealth upwards (to richer agents)
will in turn make the agent with rank R impoverish as
well. Therefore, each rank goes bankrupted at a spe-
cific timescale. Poorer ranks (of order N) do so at times
of order 1/θ, while richer ones (of order one) take time
t0 = N/θ. The second-richest agent goes bankrupted at
time T2 = t0 log 2, leaving a single rich agent to account
for most of the wealth. This justifies our identifying of t0
as the timescale needed for complete condensation. The
entire process of enrichment followed by bankruptcy for
the different ranks is visualized in Fig. 1.

III. NETWORK YS IN THE STABLE PHASE
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FIG. 2: Critical probability pc(f) as obtained from fitting
(5) to data for τ0(p, f) in the full-mixture case (full squares),
one-dimensional network (empty squares), two-dimensional
networks (circles), and random graphs with γ = 10 (trian-
gles). Error bars are smaller than the symbols and were not
drawn. The full line is the full-mixture theoretical prediction
p∗(f) as given by (2). The number of agents was N = 400 in
all cases.

In this section, results from numerical simulations for
1d rings, 2d square lattices with periodic boundaries,
Erdős-Rényi Random Graphs, and full-mixture, are de-
scribed and compared with analytic predictions for the
full-mixture case. Starting from an even distribution of
wealth among the N agents, the system is first equi-
librated during Teq timesteps before measurements are
taken. The required number of equilibration steps is de-
termined by measuring c(τ) for a series of increasing Teq

values, until it is found to no longer depend on Teq. Sys-
tem sizes from N = 100 to 1000 agents are considered.
We first describe how the critical line pc(f) is determined
numerically in this work. Firstly, after equilibrating the
system as described above, correlation functions c(τ) are
measured in the stable phase for many pairs p, f and for
each network considered. Once c(τ) is known for each
pair (f, p) and for each network, (4) is fitted to these data,
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from where estimates for the relaxation times τ0(p, f) are
obtained. As expected, τ0 is found to diverge on ap-
proach to a critical value pc(f) that delimits the stable
phase from below. By next fitting (5) to our data for
τ0(p, f), we can obtain very precise estimates for pc(f),
the location of this divergence. Our results are shown in
Fig. 2. The critical values so found are, in all cases, con-
sistent with the full-mixture prediction (Eq. (2)) within
numerical errors, suggesting that pc(f) = p∗(f), for all
networks considered.
The above result differs from expectations based on

the theory of equilibrium phase transitions. In that case,
for a given interacting system, critical parameters as
e.g the critical temperature, do depend on the network,
i.e. are not universal. The analogous parameter for
Yard-Sale is the critical probability pc, which, within our
numerical errors, seems to be network-independent and
the same as in the full-mixture, or Mean-Field, case. We
therefore propose that the critical interface (2) derived
for the full-mixture case is exact on any singly-connected
network.
Equilibrium wealth distributions in the stable
phase (p > p∗(f)) where measured (not shown) for
all networks considered in this work, for several pairs
(p, f), and compared with full-mixture. We found that
P (w) is network-dependent, although differences with
full-mixture are minor. Relaxation timescales, on the
other hand, are found to be strongly network-dependent,
which is reasonable since the paths through which
wealth can flow are dictated by network topology. As
expected, relaxation to equilibrium takes longer on 1d
rings, because there are lesser paths for wealth to flow,
and it is fastest in the full-mixture case.

IV. NETWORK YS IN THE UNSTABLE PHASE

In the fully mixed case, whenever the system is in the
unstable phase p < p∗(f), where p∗(f) is given by (2),
all wealth ends up being owned by a single rich agent
in the long run. This process is called wealth conden-
sation [9, 10]. For numerical purposes, in this work we
assume that the system is completely condensed when
r(t) = w(2nd)/w(1st) ≤ 10−4. The time t0 needed
for this limit to be reached is measured and averaged
over 103 condensation histories. Results for t0/N in
the complete-graph limit (full mixture) are displayed in
Fig. 3a (open and filled circles), and are found to behave
as t0(p, f) ∝ (p∗(f)− p)−1, in entire accordance with the
theoretical result (8) for full-mixture.
For network-restricted Yard-Sale in the unstable phase,

complete wealth condensation onto a single agent is no
longer observed. Instead, in the long run, the whole
wealth condenses onto an extensive set of locally rich
agents (LRA). A locally rich agent is defined to be one
who is richer than any of its neighbors. Agents who are
non-LRA impoverish steadily in the long run, because in
the unstable phase there is a systematic transference of
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a)

102
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t 0
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FIG. 3: a) Condensation time t0 divided by coordination γ,
for random graphs with link density dl = γ/(N − 1) = 0.2
(squares) 0.8 (triangles), and 1.0 (full-mixture case, circles).
Empty symbols show data for N = 400, filled ones for N =
900 agents. The solid line is ∼ 1/(p∗ − p). b) Condensation
time t0 divided by coordination number γ = 2d, for periodic
rings (squares) and periodic square lattices (circles) with N =
400 (empty symbols) and N = 900 (filled symbols). The
exponent for the divergence at p∗ is estimated as 1.15 ± 0.2
(solid line is ∼ 1/(p∗ − p)1.15.).

wealth from poor to rich agents. For long times, each
LRA is only connected to agents whose wealth is ex-
tremely small. Wealth exchange is then effectively sup-
pressed, leading to dynamical freezing, onto a disordered
final state.

A. Condensation times

At long times, there is a clear scale separation between
the wealth of each LRAs and those of its neighbors, the
latter going exponentially to zero in time. We assume
that the final set of LRAs has been irreversibly frozen,
and that wealth exchange has effectively stopped, when
each LRA is richer than its richest neighbor by a fac-
tor of at least 10−4. This criterion generalizes the one
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FIG. 4: Final density ρ of locally rich agents, as a function of
distance (p∗ − p) to the interface, on 1d rings (diamonds), 2d
square lattices (circles), and Random Graphs with average co-
ordination γ = 10 (squares), 20 (triangles), and 100 (inverted
triangles). Empty symbols indicate data for for f = 0.1 and
filled symbols for f = 0.2. The number of agents was N = 400
in all cases.

we adopted for full-mixture, and reduces to it whenever
there is condensation, in which case there is only one
LRA.
Fig. 3a shows condensation times divided by coordi-

nation γ, for Random Graphs with variable link density
dl = γ/(N − 1). The case dl = 1 (circles) is the complete
graph, or full-mixture case. Condensation times are seen
to diverge at the interface as 1/(p∗ − p), that is, the ex-
ponent of this divergence does not depend on γ and is
the same as for full-mixture. Our results also show that
t0 is roughly proportional to γ, which is consistent with
Eq. (8) for the full-mixture limit, in which case γ = N−1.
Fig. 3b shows t0/γ for 1d and 2d networks, where

γ = 2d. The exponent z in t0/γ ∝ (p∗(f)− p)−z seems
to be slightly larger for these finite-dimensional net-
works. Although z is arguably dimension-dependent,
the quality of our data does not allow us to resolve the
difference between z1d and z2d. Our best estimate is
z1d,2d = 1.15± 0.20 in one and two dimensions.

B. Locally Rich Agents

Clearly, any set of LRAs with arbitrary wealths, sur-
rounded by impoverished agents is a fixed point of the dy-
namics. There is thus a non-denumerable multiplicity of
fixed points, among which the wealth exchange dynamics
chooses one stochastically. The statistical properties of
these fixed points, as for example the average number of
LRAs, and their wealth distribution, depend on the pa-
rameters of the model, as well as on the topology of the
network, among other things. A detailed study of these

properties is beyond the scope of this work. However,
some of the most relevant properties of LRAs, namely
their number and wealth distribution, will be briefly dis-
cussed in the following.

1. Number of LRAs

Once the above described criterion for the formation of
a set of LRAs is satisfied, the dynamics is stopped, and
the properties of LRAs are determined. Measurements
are averaged over 103 repetitions of the condensation his-
tory, for each case.
Condensation of wealth onto a reduced set of agents

is a consequence of the unstable nature of the dynamics
for p < p∗(f). There is a systematic transfer of wealth
from poor to rich, which in turn increases wealth dif-
ferences. The strength of this instability is given by
θ(p, f) (Eq. (1)), and becomes zero right at the inter-
face p = p∗(f). Close to this interface, where θ is small,
wealth appropriation by the richer agents happens very
slowly. Wealth has then more time to migrate to richer
agents, before the dynamics comes to a halt. One there-
fore expects the process of wealth concentration onto a
single rich agent to happen more completely there, than
deep inside the unstable phase, where dynamical arrest
takes place in a short time. One could then expect the
average number of LRAs to decrease on approach to the
interface.
However, our results, displayed in Fig. 4, show that,

for a given network, the final density ρ of LRAs depends
only very mildly on the exchange parameters p or f . In
other words, the number of LRAs is roughly the same
in the whole unstable phase, and is only determined by
the network’s properties (see Section IVB2). For 1d
rings and 2d square lattices, there is even no observable
f -dependence in Fig. 4.

2. Analytical prediction for ρ

By definition, no two LRAs are connected to each
other. Therefore, a set of LRAs constitutes an indepen-
dent set [22] of the graph. A partition of a graph into
independent sets constitutes a coloring. We thus con-
clude that long-term YS evolution in the appropriation
phase identifies colorings of the network.
Since, as our numerical results suggest (see Fig. 4), the

number of LRAs is not strongly dependent on f and p,
one can obtain useful information by studying the partic-
ular case f = 1, p = 1/2, which is analytically tractable
to some extent. In this particular case, whenever two
agents interact, the winner is chosen at random. If the
richest agent wins, he gets the whole wealth of the loos-
ing agent, who is in turn rendered inactive. A similar
process is studied in the context of “coagulation” or “co-
alescence” A+A → A+ S of immobile reactants on a
network [23–25]. Analytical descriptions for the density
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FIG. 5: Final density ρ of locally rich agents versus average
coordination γ, on Random Graphs with N = 400 agents
(empty symbols), and N = 900 agents (solid symbols), for
f = 0.1, p = 0 (squares), f = 0.6, p = 0 (circles), and f =
1.0, p = 1/2 (triangles). The solid line is a prediction from
Abad [25].

of the active species A (S is the inert species), which in
our case is the final density of LRA, have been provided
for these, as well as for related models [30, 31] that con-
sider “annihilation” A+A → S + S as well.
In particular, Abad [25] provides explicit expressions for
the final density ρ of active agents on 1d and 2d lattices,
as well as on Bethe Lattices with coordination γ. If ρ0
is the initial density of active sites, the final density on a
Bethe lattice is

ρ = ρ0

(

1 +
γ − 2

2
ρ0

)−γ/(γ−2)

. (9)

For large γ, this gives ρ = ρ0 for ρ0 < 2/γ, and ρ ∼ 2/γ
if ρ0 > 2/γ .
A comparison between (9) and our own numerical results
on Random Graphs (RG) with average coordination γ is
shown in Fig. 5. Notice that all sites on a Bethe lattice
have γ neighbors, while this is satisfied only on average
for Random Graphs. Therefore, a perfect coincidence
is not expected. Nevertheless, an acceptable similarity
between our numerical results and (9) is found.
The 1d case is obtained from (9) in the limit γ → 2+,

and equals ρ = 1/e for ρ0 = 1 as is our case. Our nu-
merical result in 1d is approximately 0.4 ( Fig. 4), some-
what larger than this analytic prediction. Abad’s two-
dimensional approximate result is ρ = 1/4 for ρ0 = 1,
again slightly smaller than our numerical results on 2d
square lattices, shown in Fig. 4.
These results show that the dynamical process of mul-

tiplicative wealth concentration on networks has fea-
tures in common with annihilation and coalescence [23–
25, 30, 31] of immobile reactants. Furthermore, it was in
the context of those models that the failure of the MF ap-

proximation to predict the final density of active species
was first noticed. While MF predicts a zero asymptotic
density of the active species, on generic networks a finite
value is found. This parallels our observation that, while
in full mixture wealth condenses onto a single agent, on
networks it does so onto an extensive set of agents.

3. Wealth distribution of LRAs
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FIG. 6: Log-log (top row), log-lin (middle), and lin-lin (bot-
tom) plots of wealth distribution of locally rich agents (LRA)
in the frozen state, with f = 0.6 and p = 0 (plusses), 0.2
(crosses), 0.4 (asterisks), 0.6 (squares), and 0.659 (circles).
The critical probability for this value of f is p∗ = 0.660964 in
MF. The first column is from simulations on 1d rings (similar
results were obtained on 2d square lattices) and the second
one on Random Graphs with γ = 20. In all cases, N = 400
agents was used.

Wealth distributions of LRAs in the frozen state are
displayed in Fig. 6 for 1d and RG with γ = 20. Wealth
distributions on 2d lattices were also measured (are not
shown) and found to be qualitatively similar to those in
1d. In all three cases, the minimum in P (w/ 〈w〉) for
w/ 〈w〉 ≈ 1 suggests the existence of two sets of LRAs
with different properties. For the sake of this analysis,
the population of LRAs is divided in two groups accord-
ing to their wealth. Those with wealth w > 〈w〉, have a
roughly normal wealth distribution in 1d and 2d, and an
exponential wealth distribution on Random Graphs. We
call these “type 1” LRAs. In addition to those, LRAs
with w < 〈w〉, have wealths distributed according to a
power-law P (w) ∼ 1/w that extends down to zero. These
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we call “type 2” LRAs.
We have measured (not shown) the numbers of type 1
and 2 LRAs versus time for all networks with various
parameter values. For p values that are not too close to
the interface, freezing occurs rapidly, and the final num-
ber and cumulative total wealth of type 2 LRAs turns
out to be almost negligible compared to those of type 1.
In other words, most LRAs are type 1, i.e. have wealths
larger than average in the frozen state. Additionally, the
wealths of type 1 LRAs are found to have a narrow dis-
tribution if not too close to the interface. Very close to
the interface, i.e. for p → p∗(f), on the other hand,
a significant amount of conversion from type 1 to type
2 occurs before the frozen state is reached. During this
process, the number of type 1 LRAs drops steadily, while
the total number of LRAs stays almost constant or in-
creases slowly. Conversion from type 1 to type 2 means
that a large number of LRAs, despite being richer than
their neighbors, can still loose a significant fraction of
their wealth, which in the end goes to the few remaining
type 1 LRAs. This is possible because close to the inter-
face θ (Eq. (1)) is small, and therefore being richer does
not ensure a strong statistical advantage.
On approach to the interface, wealth distributions of
LRAs develop long tails for large wealth, and the power-
law behavior P (w) ∼ 1/w is seen to extend to the right.
Therefore, the distinction between the wealth distribu-
tions of type 1 and type 2 LRAs is blurred in this limit.
Near the interface, a single LRA ends up owning a sig-
nificant fraction of the whole wealth. Therefore, even
though the total number of LRAs remains approximately
constant when the interface is approached, most of them
will only have negligible wealth in the end. Therefore, we
conclude that wealth condenses onto a single rich agent,
on any connected network, when the system is unstable
but very close to the critical interface p∗(f).
In the case of Random Graphs, condensation onto a sin-
gle agent occurs in the whole unstable phase only in the
complete graph limit, i.e. in the limit dl = γ/(N−1) → 1.
A measure of wealth condensation is provided by W2 (see
Eq. (7)). A plot of W2 at freezing versus link density dl
is shown in Fig. 7. These data show that full conden-
sation in the whole unstable phase only happens in the
complete-graph limit. Inside the unstable phase, wealth
is distributed among all LRAs roughly uniformly. Un-
less the system is really close to the interface, one has
W2 ∼ dl. This result can be understood as follows.
In the frozen state, as shown in Fig. 6, wealth is dis-
tributed exponentially among the resulting NLRA(γ) lo-
cally rich agents. If there are NLRA locally rich agents
and the rest have zero wealth, Eq. (7) can be rewritten

as W2 = 1/NLRA(1 + σ2/ 〈w〉
2
), where σ is the variance

of the wealth distribution of the LRAs. For the partic-
ular case of an exponential distribution, σ2 = 〈w〉

2
and

therefore W2 = 2/NLRA. As discussed in Section IVB2,
the density ρ of LRA is approximately 2/γ for large γ.
Therefore NLRA = 2N/γ = 2/dl, which renders W2 ∼ dl
as observed numerically for (p, f) points not too close to

the interface (Fig. 7).

 0
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 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
2

dl=γ/(N-1)

FIG. 7: Second moment W2 (Eq. (7)) of wealth distri-
bution on Random Graphs at freezing, versus link density
dl = γ/(N − 1), for f = 0.1 and p = 0.0 (plusses), 0.45
(squares), 0.52 (circles), and 0.525 (triangles). Dotted lines
are guides to the eye. The critical interface for this value
of f is located at p∗ = 0.525042. The number of agents is
N = 200.

V. DISCUSSION OF RESULTS

Yard-Sale (YS) [6–12] is a simple but realistic model
for commercial exchange that presents two phases:
a stable (or wealth-sharing) phase where wealth is
distributed and an unstable (or wealth-appropriation)
one where wealth concentrates in the hands of a few
agents. We have numerically studied the static and
dynamic properties of YS on several types of networks,
comparing them to those in the full-mixture (or mean-
field) approximation. Equilibrium wealth distributions
P (w) on networks, in the stable phase, are found to
be very similar to those in full-mixture. Measuring
decorrelation times τ0, which in the this model can be
interpreted as “social mobility” times, we are able to
very precisely locate the interface that separates the
wealth sharing from the wealth appropriation phases
(Fig. 2). Our numerical results strongly suggest that
the critical interface p∗(f) derived in the full-mixture
approximation (Eq. (2)) is exact on any network.
An important result is the observation that, for network
YS in the unstable phase, wealth does not condense
onto a single agent as it does in the fully mixed case,
but onto an extensive set of locally rich agents (LRA)
instead. These LRAs form an independent set [22]
in the network, and therefore define a coloring of it.
The final density of agents with nonzero wealth is thus
finite on networks, while it is zero for full mixture.
In recent related work [32], it was proposed that the
emergence of many locally rich agents might be due to
multiple-connectedness of the network, suggesting that,
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on networks made of just one connected component,
global condensation onto one agent would eventually
occur. This expectation is not confirmed by our results,
which show that an extensive number of LRAs remain, in
the whole unstable phase, on singly-connected networks
as well. It is only in the limit of a complete graph, which
is the fully mixed case, or, (on any network) in the limit
θ → 0 (i.e. right at the interface), that condensation
onto a single agent is observed.
We have discussed previously unnoticed connections
between wealth condensation in YS and earlier studies
of annihilation [30, 31] or coalescence [23–25] of immo-
bile reactants, a related statistical problem where the
distinction between network results and mean-field ones
(i.e. zero vs nonzero final density of LRAs) was first
noticed [23, 24]. With the help of these connections, we
have been able to compare our own numerical results
(Figs. 4 and 5) with analytic predictions [25] for the
remaining density of wealth-possessing agents on several
networks. A good coincidence is found throughout the
entire unstable phase. Furthermore, by using analytical
expressions for the density of remaining LRAs on
Random Graphs, we were able to explain our numerical
results (Fig. 7) showing that W2 ∝ dl on Random
Graphs, deep inside the unstable phase.
Surprisingly, the density of LRAs is essentially constant
in the whole unstable phase, although their wealth
distribution is not. Their wealth distribution is roughly
homogeneous, i.e. has a relatively narrow distribution,
except when extremely close to the interface. A particu-
larity that deserves further attention is the fact that the
wealth distribution of LRAs in the frozen state is nearly
normal in one and two dimensions, but exponential on
Random Graphs (Fig. 6)
Very close to the interface that delimits the unstable
phase from above, however, wealth is no longer homo-
geneously distributed among the LRAs, but develops
a long right tail of the form P (w) ∼ 1/w until, at
the interface itself, only one rich agent remains, which
owns the whole systems’ wealth. Therefore, on the
interface itself, condensation onto a single agent is again

observed, on any network. However, the time needed
for condensation diverges in this limit, in contraposition
to the full mixture case, where wealth condenses onto a
single agent in finite time.
We have found that YS models only show strongly
network-dependent properties when the system’s pa-
rameters (p, f) are in the unstable phase. In the light
of this result, the correlations between topological
properties and wealth distributions that have been
recently observed in experimental studies of global
commercial networks [14–16], may be interpreted as
suggesting that the international trade system is itself in
the unstable phase. In other words, that the microscopic
exchange rules for international trade are such that favor
systematic wealth appropriation by larger agents. Other
evidences of this possibility have been recently found by
analyzing the distribution of per-capita gross domestic
products [33].
On the other hand, as already said in the introduction,
global wealth distributions depend on processes other
than conservative exchange. The generation of wealth
by endogenous processes, for example, acts as a source of
wealth that would avoid freezing in the unstable phase.
A system under unstable exchange, in the presence of
wealth creation by endogenous processes, would reach
a quasi-stationary state in which wealth is produced
everywhere and then channeled towards richer agents by
the exchange processes.
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trade web rid b-7795-2011. Phys. Rev. E, 68:015101,
2003.

[15] D. Garlaschelli and M. I. Loffredo. Fitness-
dependent topological properties of the world trade web.
Phys. Rev. Lett., 93:188701, 2004.

[16] D. Garlaschelli, T. Di Matteo, T. Aste, G. Caldarelli, and
M. I. Loffredo. Interplay between topology and dynamics
in the world trade web rid e-9961-2010. Eur. Phys. J. B,
57:159–164, 2007.

[17] For a review, see e.g. M. A. Serrano, D. Garlaschelli,
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