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Abstract. We introduce and treat rigorously a new multi-agent model of the
limit order book. Our model is designed to explain a behavior of the market when
new information affecting the market arrives. Our model has two major features.
First, it constitutes a nonlinear Markov process. Second, it has two additional
parameters which we call slow parameters. These parameters measure mood of
two groups of investors, namely, bulls and bears. We explain the intuition behind
the equations and present numerical simulations which show that behavior of the
model is similar to the behavior of the real market.
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1. Introduction. COB and volume.

Starting from Louis Jean-Baptiste Alphonse Bachelier people tried to model be-
havior of the market using various stochastic processes. Bachelier himself in 1900
used a Brownian motion, [3]. Later people began to use Markovian diffusions,
diffusions with jumps and even processes determined by infinite divisible distri-
butions. Models of the price change are numerous as well as the behavior of the
market which changes its statistics over time.

In the last 15-20 years all US equity and futures exchanges made the order book
electronic and information about active orders in the book is available to market
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participants. The term market microstructure was born though the definition
varies depending on the author, [7].

In the recent years numerous models of the market microstructure were intro-
duced and studied. Here we have to mention papers [11, 19] in financial literature
on various models of the book and limit order markets. At the same time in
physics literature can be found a large number of the so called multi-agent models,
see reviews [2, 12, 13] and original paper [17]. In these models idealized market
participants or agents submit buy or sell orders (limit or market) to the matching
mechanism and these orders are executed according rules of exchange. Since limit
orders are waiting for execution in FIFO queues these multi-agent models should
be treated as a part of queuing theory. Also we have to mention the papers of
[1, 21] where stochastic models of the order book dynamics are considered.

In this paper we introduce and study a new multiagent nonlinear Markov model
of the order book. Our model is designed to simulate a real life phenomena well
known to traders in equity and futures market. The phenomena is depicted on
the Fig 1 which contains a graph of the price of the index S&P500 future contract
ESM08 (HLOC one minute bars) and another graph of trading volume on Friday
April 4 of the year 2008. This is the first Friday of the month and information
about employment is released at 8:30 am.

Fig 1.

In absence of the news before 8:30 the price changes in a diffusive manner and
volume of trading is fairly low. When news hit the market the price changes by a
jump and then slowly returns to the initial range. At the beginning of this process
the volume of trading increases significantly. This can be seen from the second
graph. When time goes by the volume decreases and the price returns to the
vicinity of the price before the announcement. Such mean reverting behavior is

2



well known to intraday traders who follow the standard calendar of announcements
of economic indicators, [16].

The price change in our new nonlinear Markov multiagent model is produced
by interaction of market participants with different roles through the matching
mechanism. This stochastic process is a nonlinear discrete analog of the classical
Ornstein-Uhlenbeck process. Our approach is conceptually similar to the attempt
to explain classical Brownian motion through mechanical model of a heavy particle
interacting with the ideal gas, see [20].

Our model has two major features. First, it uses ideas of kinetic theory. Specif-
ically the ideas from the theory of Vlasov equation. Originally this equation was
written for plasma where ions interact with long range Coulomb forces. Therefore
an interaction between ions can not be neglected. The force acting on an ion can
be computed by averaging the potential over the distribution of other ions in the
configuration space. A mathematical model of this phenomena was introduced by
H.McKean in the form of nonlinear Markov process, [15]. In our model the dynam-
ics of parameters at any moment of time is also determined through the quantities
which are obtained by averaging over the distribution of price at this moment.

Second, the important feature of our model is that it introduces two ”slow”
parameters L(t) and M(t) which are functions of time. It is known that there
are various time scales in time series or data generated by financial markets. For
concise review see [4]. Functions L(t) and M(t) measure sentiment of the market
(bulls and bears) about fair price of the security. They change relatively slow
compare to the price which is the fast parameter.

The numerical simulations of our model produce the graphs of functions L(t), M(t)
price and volume which are depicted on Fig 2.
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Fig 2.
We let the reader to compare two graphs of price and volume.

Now we proceed to the description of our model.

2. Description of the model.

2.1. Matching mechanism. Here we will describe matching mechanism. We
adopt the following conventions. A queue is represented by a half axis as shown on
Figure 3. Orders contain integer number of elementary unites (contracts/stocks)
and they are executed by FIFO rule. Orders can be executed partially.

Fig 3.

Order book is a structured list of interacting queues as shown on Figure 4. Price
levels are indexed by integers numbers. Each price level has two queues. One
queue contains orders to buy not higher then this price level, the second contains
orders to sell at price not lower then the price level.
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Fig 4.

The book has this form due to the following rule. If some price level X has
k orders to buy and some price level Y has p orders to sell then if X greater or
equal to Y them min(k,p) orders are executed immediately and removed from the
system. This is shown on Figure 5.

Fig 5.

5



The real book on NYSE and NASDAQ shows all orders at all levels. On CME the
book shows only aggregated levels.

2.2. Market participants. In the real market traders submit market and limit
orders. The behavior of market participants determine the state of the book and
evolution of the price.

In our model these trading activities are separated between four groups of
traders.

Ask maker - Ask(p,s).
Bid maker - Bid(p,s).
Ask taker - Buy(s).
Bid taker - Sell(s).

We assume that each group consists of one trader. Ask/Bid makers fill each level
of the book with just one contract as shown on Fig. 6.

Fig 6.

If Ask taker submit buy order then she buy at the price n. If Bid taker submit
market sell order then she sells at the price n-1. If ask/bid taker send the order
and take contract on the ask/bid then immediately bid/ask maker fill the emptied
level. Therefore dynamics of the book is determined by ask/bid takers.

Ask taker (buy market orders) sends the order with exponential rate

λn = λLn = e−c(n−L).

Bid takers (sell market orders) sends the orders with exponential rate

µn = µMn = ec(n−M).

These rates produce a continuous time Markov chain Xt on Z1. The functions L(t)
and M(t) vary in time according to the differential equations

dL(t)

dt
= −(EπXtλ

L
Xt − Eπsλ

s
X) +

∑
Akδ(t− τk), (2.1)
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dM(t)

dt
= +(EπXtµ

M
Xt − Eπsµ

s
X)−

∑
Bkδ(t− θk).

The expectation EπXt with respect to the distribution of the process Xt in the
moment of time t. The expectation Eπs with respect to the equilibrium distribution
of the process Xt with s = L = M . The quantity Eπsλ

s
X = Eπsµ

s
X is a constant.

The variables A’s and B’s are random. They arrive at random times τ ’s and
θ’s. We can assume that these times are exponentially distributed. We call terms
incorporated under the sum signs an exterior forces. The triple

(Xt, L(t),M(t))

forms a nonlinear Markov process. Its transition probabilities depend on the dis-
tribution πXt and the distribution of the exterior forces. Without exterior forces it
can be described as a nonlinear discrete analog of the classical Ornstein-Uhlenbeck
process.

Questions regarding proofs of existence and convergence to equilibrium are con-
sidered in [18]. In the following sections we explain intuition behind these equations
and some of their properties.

Apparently behavior of idealized market participants can be defined differently.
In some cases the book can be analyzed only numerically, [5].

3. Ehrenfest model and continuous OU.

We start with the simplest discreet analog of the classical Ornstein-Uhlenbeck
process which also exhibits mean reverting behavior. In 1907 P. and T. Ehrenfest
[6] introduced a model which later became known as the ”Ehrenfest urn model”.
Fix an integer N and imagine two urns each containing a number of balls, in a such
way that the total number of balls in the two urns is 2N. At each moment of time
we pick one ball at random (each with probability 1/2N) and move it to the other
urn. If Yt denote number of balls in the first urn minus N then Yt, t = 0, 1, 2...;
form a Markov chain with the state space {−N, ..., N}.

This Markov chain is reversible with binomial distribution as a stationary mea-
sure

πEk =
2N !

(N + k)!(N − k)!

(
1

2

)2N

, k = −N, ..., N ;

and the generator

AEf(k) =
1

2

(
1− k

N

)
f(k + 1) +

1

2

(
1 +

k

N

)
f(k − 1)− f(k).

In 1930 Ornstein and Uhlenbeck [10] introduced a model of Brownian particle
moving under linear force. It is a Markov process with the state space R1 and the
generator

AOU =
d2

dx2
− 2cx

d

dx
, c > 0.
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The OU process is reversible with invariant density

πOU(x) =

√
c

π
e−cx

2

.

The two Markov processes are related. Under scaling

k ∼ x,

spatial 1 ∼ 1√
n
,

N ∼
√
n

c
;

the generator AE takes the form

AEf(x) =
1

2

(
1− xc√

n

)
f(x+

1√
n

) +
1

2

(
1 +

xc√
n

)
f(x− 1√

n
)− f(x).

Using Teylor expansion after simple algebra we have

AEf(x) =
1

2n
[f ′′(x)− 2cxf ′(x)] + ... =

1

2n
AOU + ...

That shows on a formal level that AEconverges to the generator AOU . Also bino-
mial distribution πEk converges to a Gaussian measure with the density πOU(x).

4. Discrete OU process. Speed and jump measure.

Now we introduce a different discretization of the classical OU process. In its
simplest form Xt is a continuous time Markov process on Z1. The intensity of a
jump up is

λn = λLn = e−c(n−L),

and of a jump down is
µn = µMn = ec(n−M),

where c > 0 and L and M are real numbers. Later we will make L and M time
dependent.

Now we want to study behavior of the process specifically the probability of
getting to infinity and expectation of time of returning from infinity. We assume
that L = M = 0. Since both spatial infinities are identical we consider the
process on right semi-axis. A method of study such processes by means of an
auxiliary space(X,E) was introduced in the paper [9]. The set E consists of points
{xn}∞n=0 ⊂ R>0, where

x0 =
1

µ0

= 1,

x1 = x0 +
1

λ0
= 2, . . .
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xn+1 = xn +
µ1µ2 . . . µn
λ0λ1 . . . λn

= xn + ecn(n+1),

and
x∞ = lim

n→∞
xn =∞.

This fact implies that the process is recurrent, see [1: 16.b].
The measure µ is defined by the rule

µn = µ({xn}) =
λ0λ1 . . . λn−1
µ1µ2 . . . µn

= e−cn
2

.

The ideal point x∞ is an entrance point, i.e. the expectation of time to come to
the finite part of the phase space starting at infinity is finite. This follows from
the estimate

∞∑
n=0

xnµn =
∞∑
n=0

n∑
k=0

ec(k(k−1)−n
2) 6

∞∑
n=0

(n+ 1)e−cn <∞.

Whence, Xt is very close to a Markov chain with finite number of states.
The detailed balance equations

π(n)λn = π(n+ 1)µn+1, π(n)µn = π(n− 1)λn−1,

are satisfied for the distribution

πs(n) =
1

Ξ
e−c(n−s)

2

, s =
L+M

2
.

The normalization factor Ξ = Ξ(s, c) is given by

Ξ(s, c) = e−cs
2

Θ

(
cs

iπ
,
ci

π

)
,

where Jacobi theta function, [8], is

Θ(v, τ) =
∑

e2πivn+πiτn
2

.

It is interesting that invariant measure π which should depend on both parameters
L and M depends on s only. The chain is ergodic and reversible.

For L = M = 0 the process Xt has generator

Af(n) = e−cnf(n+ 1) + ecnf(n− 1)−
(
e−cn + ecn

)
f(n).

Let us show how on formal level AOU can be obtained from the generator of discrete
process. If one scales

n ∼ x,

spatial 1 ∼ 1√
n
,

c ∼ c√
n

;
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then

Af(x) = e
− c√

n
x

[
f(x+

1√
n

)− f(x)

]
+ e

c√
n
x

[
f(x− 1√

n
)− f(x)

]
.

Using Taylor expansion we have

Af(x) =
1

n
[f ′′(x)− 2cxf ′(x)] + ... =

1

n
AOUf(x) + ....

Apart from the factor 1
n

this is a generator of the classical model. Also under this
scaling discrete Gaussian distribution πs(n) converges to the Gaussian distribution
with the density πOU(x). It is naturally to call Xt a discrete Ornstein-Uhlenbeck
process.

In addition to s it is natural to introduce another variable d = L−M
2

. The case
when d = 0 we call agreement and d 6= 0 we call disagreement. The invariant
measure does not depend on parameter d but the intensity of jumps does. Simple
arguments show that at the equilibrium for any d

Eπsλ
L
X = Eπsµ

M
X .

In the case of disagreement at the equilibrium expectations are changed by expo-
nential factor ecd

Eπsλ
L
X = ecdEπsλ

s
X , Eπsµ

M
X = ecdEπsµ

s
X . (4.1)

Apparently when d > 0 the expectation increases and if d < 0 decreases.

5. Slow functions L and M. Nonlinear Markov process.

Let us assume that parameters L andM are not constants but are some functions
of time. They change according to differential equations

dL(t)

dt
= −(EπXtλ

L
Xt − Eπsλ

s
X) +

∑
Akδ(t− τk), (5.1)

dM(t)

dt
= +(EπXtµ

M
Xt − Eπsµ

s
X)−

∑
Bkδ(t− θk).

The variables A’s and B’s are random and positive. They arrive at random times
τ ’s and θ’s. We can assume that these times are exponentially distributed. We
call terms incorporated under the sum signs an exterior forces. The triple

(Xt, L(t),M(t))

forms a nonlinear Markov process. Its transition probabilities depend on the dis-
tribution πXt of the first component and distribution of the exterior forces.

Lets us explain the intuition behind these equations. In reality there are two
groups of market participants. They are called bulls and bears. Consider the bulls
which try to make the price higher all the time and submit buy market orders
with intensity λLn . Buying a contract is an expense for them. Bulls have two
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quantities in mind. One is the quantity Eπsλ
s
X which is how much they are willing

to pay per unit of time. Another quantity is the function L(t) which measures
their expectations about fair price. If their expectations about fair price are too
high then the quantity EπXtλ

L
Xt
− EπsλsX is positive and the bulls decrease their

expectations according to the differential equation

dL(t)

dt
= −(EπXtλ

L
Xt − Eπsλ

s
X).

When positive news arrive the bulls change their expectations by a jump. That
is contribution of the sum corresponding exterior sources. Exactly the same argu-
ments apply to the bears which submit sell orders with intensity µMn .

The situation resembles random walk in random environment. The functions
L(t) and M(t) determine transition probabilities PL,M of Xt and expectations
EL,M with respect to these probabilities. These functions are hidden parameters
of the system and it is possible to condition on them. Instead we condition on
the exterior forces A’s and B’s which through differential equations determine
the functions L and M . These transition probabilities are denoted by PA,B and
corresponding expectations by EA,B. We refer to them as quenched probabilities
and expectations.

The Poisson measure on exterior forces A’s and B’s we denote by P . The product
measure PA,B × P determines averaged transition probabilities of the process Xt.
The corresponding expectation we denoted by EXt .

6. Hydrodynamic limit.

In this case one assumes that the variables L and M change change with macro-
scopic time t while the process Xτ moves with microscopic time τ = t/ε where
ε > 0. In the limit ε → 0 the process Xτ is always at equilibrium i.e. it has
stationary distribution πs for all moments of time. Therefore, using 4.1

11



dL(t)

dt
= −(ecd − 1)Eπsλ

s
X +

∑
Akδ(t− τk),

dM(t)

dt
= +(ecd − 1)Eπsµ

s
X +

∑
Bkδ(t− θk).

Subtraction one equation from another and discarding the ”news” we obtain closed
equation for the function d(t):

d•(t) = −(ecd − 1)V,

where V = Eπsλ
s
X = Eπsµ

s
X . This can be solved explicitly using substitution

d = 1
c

log(±ϕ).
If a solution is negative for some moment of time then it stays negative for all

moments and it is given by

d(t) =
1

c
log

AecV t

AecV t + 1
, A > 0.

The solution increases monotonously from negative infinity to zero when time runs
the whole axis.

On the opposite, if a solution is positive for some moment of time then it stays
positive for all moments of time when its defined. The solution is given by the
formula

d(t) =
1

c
log

AecV t

AecV t − 1
, A > 0.

The solution is defined and decreases monotonously from positive infinity to zero
for t > t0 = − 1

cV
logA.

7. Continuum limit.

Now we consider a continuum limit of the discrete model. The continuous time
process X (t) with values in R1 is defined as a solution of the stochastic differential
equation

dX (t) = ec( L−M)

[
dw(t)− 2c

(
X (t)−  L +M

2

)
dt

]
,

where c > 0 and the functions  L(t) and M(t) are

d L(t)

dt
= −(ec( L−M) − 1),

dM(t)

dt
= +(ec( L−M) − 1).

There is a simple formal scaling relation between two models. The generator of
the discrete model has the form

Af(n) = e−c(n−L(t))f(n+ 1) + ec(n−M(t))f(n− 1)−
(
e−c(n−L(t)) + ec(n−M(t))

)
f(n)
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Introducing new variables

s =
L+M

2
, d =

L−M
2

,

we have

Af(n) = ecd
[
e−c(n−s)f(n+ 1) + ec(n−s)f(n− 1)−

(
e−c(n−s) + ec(n−s)

)
f(n)

]
.

If one scales

n ∼ x

spatial 1 ∼ 1√
n

c ∼ c√
n

L ∼  L +M
2

+
√
n( L−M)

M ∼  L +M
2

−
√
n( L−M)

then

s ∼  L +M
2

, d ∼
√
n( L−M);

and for the generator we have

Af(x) ∼ 1

n
ec( L−M) [f ′′(x)− 2c(x− s)f ′(x)] + ....

Apart from the factor 1
n

this is the generator of the continuous model. Time
scaling t ∼ nt removes this factor. The differential equations for L and M when
they scaled the same way produce differential equations for functions  L and M.

If  L(t) = M(t) = s, then X (t) is just a classical Ornstein-Uhlenbeck process
with mean s. It can be proved similar to [18] that if the process starts with some
 L(0) 6=M(0), then X (t) converges to OU and  L(t) andM(t) converge to the same
constant s.

8. Propagation of chaos and Monte-Carlo simulation.

For the purpose numerical simulation we consider multi-particle approximation
of the process (Xt, L(t),M(t)).

Everywhere below we will denote by c(•) any nonnegative nondecreasing func-
tion of some parameters. Define a banach space Bα consisted of all vector-functions
p = {pn}n∈Z with the Banach norm

‖p‖α =
∑
n∈Z

|pn| exp

(
cn2

2
+ α|n|

)
, α ∈ R.

13



Also let p(0) denote the initial distribution of Xt. In [18] we have proved the
following theorem:

Theorem 8.1. For any initial probability measure p(0) ∈ Bα, the process Xt

is defined correctly on the half-line [0,∞) and for any t ≥ 0 its distribution p(t)
belongs to Bα.

To simplify notations we assume c = 1. Fix some integer N and consider
the distribution of N particles on {ξi} : ξ1, ξ2, . . . , ξN ; ξi ∈ Z. The positions
of particles change with time ξi = ξi(t). We define a stochastic process XN =
(pN , LN(t),MN(t)), where pN(·) = pN(•, t) is empirical distribution of {ξi} at the
moment t. All particles {ξi} jump with the same rates

λN(ξi) = e−(ξi−LN ), µN(ξi) = e(ξi−MN ).

The functions LN(t), MN(t) change according to differential equations:{
dLN
dt

= −
(∑

n∈Z pN(n)λN(n)− EπsλsX
)

+
∑
Akδ(t− τk);

dMN

dt
= +

(∑
n∈Z pN(n)µN(n)− EπsµsX

)
−
∑
Bkδ(t− θk).

(8.1)

The random variables A,B, τ, θ′s have the same distributions as before.
We also define an auxiliary inner product on the space of infinite sequences ξ(n)

and η(n), n ∈ Z; as

〈ξ, η〉α =
∑
n∈Z

ξ(n)η(n) exp

(
n2

2
+ α|n|

)
, α ∈ R.

This inner product produces the euclidean norm denoted by |·|α. Now we are ready
to prove the following theorem.

Theorem 8.2. Let p(0) ∈ Bα+1, where α is an arbitrary real number. Assume
that E‖pN(0)− p(0)‖α+1 → 0, as N →∞. Then for all t ≥ 0

sup
s≤t

E|pN(s)− p(s)|2α → 0, as N →∞.

Proof. We will prove the theorem in assumption of absence of the news. For our
purposes it will be convinient to decompose the inifitisemal matrices of any par-
ticipants corresponding to the processes X and XN into the sum of their diagonal
and off-diagonal parts:

H = H0 + V ; HN = HN0 + VN .

Lemma 8.3. (auxilary results) Let t ≥ 0, then for all N ∈ N
(1) eL(t) ≤ c(t); e−M(t) ≤ c(t); eLN (t) ≤ c(t); e−MN (t) ≤ c(t).
(2) |e±L − e±LN | ≤ c(t)Γ(t) and |e±M − e±MN | ≤ c(t)Γ(t), where

Γ(t) =

∫ t

0

∑
n∈Z

|p(n, s)− pN(n, s)|e|n|ds.

14



(3) EΓ2(t) ≤ c(t) sups≤tE|pN − p|2α.
(4) If p(0) ∈ Bα, then E|p(HN0 −H0)|2α ≤ c(t) sups≤tE|pN − p|2α.
(5) If p(0) ∈ Bα, then E|p(VN − V )|2α ≤ c(t) sups≤tE|pN − p|2α.
(6) If p(0) ∈ Bα, then E〈pN − p, (pN − p)HN〉α ≤ c(t) sups≤tE|pN − p|2α.
(7) Let E‖pN(0)‖α+1 <∞, then∑

n

αnEQn ≤ c(t, E‖pN(0)‖α+1),

where

Qn = pN(n− 1)λN(n− 1) + pN(n+ 1)µN(n+ 1) + pN(n)λN(n) + pN(n)µN(n).

Proof. The first statement follows directly from (5.1) and (8.1). Let ξ = e−L−e−LN ,
then (5.1) and (8.1) imply

ξ′ + Eπsλ
s
Xξ =

∑
n∈Z

(p(n)− pN(n))e−n.

This ODE can be solved explicitly and we get

|e−L − e−LN | = |e−Cλt
∫ t

0

eCλs
∑
n∈Z

(p(n)− pN(n))e−nds| ≤ c(t)Γ(t),

and therefore using the first statement

|eL − eLN | = eL+LN |e−L − e−LN | ≤ c(t)Γ(t).

The other statements of the second point can be obtained by analogy. Applying
Cauchy– Schwarz inequality twice we get the third statement:

EΓ2(t) ≤ c(t)

∫ t

0

E

(∑
n

(pN − p)(n)e|n|

)2

ds

≤ c(t)

∫ t

0

E|pN − p|2α

(∑
n

e−
n2

2
+(2−α)|n|

)
ds ≤ c(t) sup

s≤t
E|pN − p|2α.

We get the fourth statement in the following way:

E|p(HN0 −H0)|2α = E
∑
n∈Z

e
n2

2
+α|n|p(n)2|HN0(n, n)−H0(n, n)|2 ≤

≤ E
∑
n∈Z

e
n2

2
+(α+2)|n|p(n)2(|eL − eLN |+ |e−M − e−MN |)2 ≤

≤

(∑
n∈Z

e
n2

2
+(α+2)|n|p(n)2

)
︸ ︷︷ ︸

=c(t), since ‖p‖α≤c(t)

·c(t)EΓ2(t) ≤ c(t) sup
s≤t

E|pN − p|2α.
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We get the fifth statement from the next estimation:

E|p(VN − V )|2α = E
∑
n∈Z

e
n2

2
+α|n||e−n+1(eL − eLN )p(n− 1) + en+1(e−M − e−MN )p(n+ 1)|2 ≤

≤ const
∑
n∈Z

e
n2

2
+α|n| [e−2n+2p(n− 1)2E(eL − eLN )2 + e2n+2p(n+ 1)2E(e−M − e−MN )2

]
≤

≤ const
∑
n∈Z

(e
(n+1)2

2
+α|n+1|−2n + e

(n−1)2

2
+α|n−1|+2n)p(n)2︸ ︷︷ ︸

=c(t), since ‖p‖α≤c(t)

·c(t)EΓ2(t) ≤ c(t) sup
s≤t

E|p− pN |2α.

Denoting for brevity x = pN − p, we get the sixth statement

E〈x, xHN〉α =
∑
n

e
n2

2
+α|n|Exn

(
xn−1e

−n+1+LN + xn+1e
n+1−MN − xne−n+LN − xnen−MN

)
=

=
∑
n

e
n2

2
+α|n|−nEeLN

(
exn−1xn − x2n

)
+
∑
n

e
n2

2
+α|n|+nEe−MN

(
exnxn+1 − x2n

)
≤

≤ c(t)
∑
n

e
n2

2
−n+α|n|Ex2n−1 + c(t)

∑
n

e
n2

2
−n+α|n|Ex2n+1 ≤ c(t)E|x|2α ≤ c(t) sup

s≤t
E|p− pN |2α.

Note that
∑

n αnEQn ≤ c(t)E‖pN(t)‖α+1. Fix t ≥ 0 and consider the Markov
chain X on Z with intensities of jumps

n→ n+ 1 :λn = exp {−|n|+ max (+L(0),−M(0)) + Eπsλ
s
Xt} · I {n ≥ 0}

n→ n− 1 :µn = exp {−|n|+ max (+L(0),−M(0)) + Eπsλ
s
Xt} · I {n < 0} .

By analogy with lemma 2.4 in [18] it is easy to prove X defines a semigroup
of transitions probabilities PX (·, ·), which are bounded operators in Bα+1. Also
due to the choice of transition probabilities we can always construct a coupling
between one participant of XN : ξi and X such that the absolute value of position
of X is not greater than |ξi| for all s ≤ t. Therefore we conclude E‖pN(t)‖α+1 ≤
E‖pX (t)‖α+1 = E‖pN(0)PX (0, t)‖α+1 ≤ c(t)E‖pN(0)‖α+1. �

Now we are ready to prove the theorem. Let us consider the process XN . During
time dt the variable pN(t) can be changed in the following way:

pN(n)→


pN(n)− 1

N
, with probability Poutdt = NpN(n)(λN(n) + µN(n))dt;

pN(n) + 1
N
, with p− ty Pindt = Ndt(pN(n− 1)λN(n− 1) + pN(n+ 1)µN(n+ 1));

pN(n), with p− ty 1− Poutdt− Pindt.

The process X is deterministic, so during time dt

p(n)→ p(n) + (pH(t))(n)dt =

= p(n) + (λn−1p(n− 1)− (λnp(n) + µnp(n)) + µn+1p(n+ 1))dt.
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Using that we get

(pN(n)− p(n))2 →


(pN(n)− p(n)− 1

N
)2 +O(dt), Poutdt;

(pN(n)− p(n) + 1
N

)2 +O(dt), Pindt;

(pN(n)− p(n)− (pH(t))(n)dt)2, 1− Poutdt− Pindt.
Applying Markov property and opening brackets we get

d

dt
E(pN(n)− p(n))2 = 2E(pN(n)− p(n))(pNHN(n)− pH(n)) +

1

N
EQn =

2E(pN(n)− p(n)) · [(pN − p)HN(n) + p(HN0 −H0)(n) + p(VN − V )(n)] +
1

N
EQn,

Summing up, we get

d

dt
E|pN − p|2α =

d

dt

∑
n∈Z

e
n2

2
+α|n|E(pN(n)− p(n))2 ≤

2E〈pN − p, (pN − p)HN〉α+

2
(
E|pN − p|2α

)1/2 · [(E|p(VN − V )|2α
)1/2

+
(
E|p(HN0 −H0)|2α

)1/2]
+

1

N

∑
n∈Z

αnEQn.

Summarizing results of lemma 8.3 we get the final estimate:

d

dt
E|pN − p|2α ≤ c(t) sup

s≤t
E|pN(s)− p(s)|2α +

1

N
c(t).

The Grownall’s lemma implies the result. �

In order to produce simulations depicted on Fig. 2 we used multiparticle ap-
proximation with N = 1000 particles {ξi}Ni=1 described above. We suppose that
the tick is ε = 0.1, so the process lives on the lattice εZ. All particles {ξi} jump
with the same rates

λN(ξi) = Ke−c(ξi−LN ), µN(ξi) = Kec(ξi−MN ),

where K is a regularizing parameter. We put c = 0.05 and K = 0.0333. There is
a jump on the picture at the moment of event L → L − A, where A = 80. After
that at some exponentially distributed moment of time there is a second jump
L→ L+ A

2
.
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