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Abstract. Exponential Lévy processes can be used to model the evolution
of various financial variables such as FX rates, stock prices, etc. Considerable

efforts have been devoted to pricing derivatives written on underliers governed

by such processes, and the corresponding implied volatility surfaces have been
analyzed in some detail. In the non-asymptotic regimes, option prices are de-

scribed by the Lewis-Lipton formula which allows one to represent them as

Fourier integrals; the prices can be trivially expressed in terms of their implied
volatility. Recently, attempts at calculating the asymptotic limits of the im-

plied volatility have yielded several expressions for the short-time, long-time,

and wing asymptotics. In order to study the volatility surface in required de-
tail, in this paper we use the FX conventions and describe the implied volatility

as a function of the Black-Scholes delta. Surprisingly, this convention is closely

related to the resolution of singularities frequently used in algebraic geometry.
In this framework, we survey the literature, reformulate some known facts re-

garding the asymptotic behavior of the implied volatility, and present several
new results. We emphasize the role of fractional differentiation in studying the

tempered stable exponential Levy processes and derive novel numerical meth-

ods based on judicial finite-difference approximations for fractional derivatives.
We also briefly demonstrate how to extend our results in order to study im-

portant cases of local and stochastic volatility models, whose close relation

to the Lévy process based models is particularly clear when the Lewis-Lipton
formula is used. Our main conclusion is that studying asymptotic properties

of the implied volatility, while theoretically exciting, is not always practically

useful because the domain of validity of many asymptotic expressions is small.

Contents

1. Introduction 3
2. Background on FX Market 7
3. Background on Exponential Lévy Processes 9
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7.4. Heston Stochastic Volatility Processes 39
8. Short-time Asymptotics 41
8.1. General Remarks 41
8.2. Exponential Lévy Processes 42
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1. Introduction

In the classical Black-Scholes-Merton (BSM) European option pricing model (see
[22] and [93]), asset processes are assumed to be strictly diffusive in nature and char-
acterized by a single (log-normal) volatility σ. In practice, no actual option market
conforms with this framework, so to make the BSM formula work, practitioners are
forced to make the volatility argument in this formula depend on option maturity
(τ) and strike (K). Indeed, it is common practice in virtually all option markets to
maintain a strike- and maturity-dependent implied volatility surface, σimp(t; τ ,K),
such that a call option on an asset F paying (F (T )−K)+ at expiration time T ≥ t
has a time t undiscounted price C(t; τ ,K) given by

(1.1)
C(t; τ ,K)

F (t)
= Φ(d+)− ekΦ(d−),

where k , ln(K/F (t)), τ , T − t, Φ(·) is the cumulative Gaussian distribution
function, and

(1.2) d± =
−k ± 1

2σimp(t; τ ,K)2τ

σimp(t; τ ,K)
√
τ

.

Here and below, as usual,

(x)
±

= ±max (±x, 0) .

Note that our version of the BSM formula assumes that the asset price F is a risk-
neutral martingale, an assumption that is easily relaxed or, in any case, justified if
we consider F a forward process. At time t, the t-observable function σimp(t; τ ,K)
can be implied (with assistance of interpolation and extrapolation techniques) from
quoted call option prices at multiple maturities and strikes. For later use, notice
that the term

(1.3) ∆ = Φ(d+),

is known as the option’s (forward) delta.
Below we often use the time value of a call option defined as follows

(1.4) δC (t; τ ,K) = C(t; τ ,K)− (F (t)−K)
+
,

or, equivalently,

(1.5)
δC(t; τ ,K)

F (t)
= Φ(d+)− ekΦ(d−)−

(
1− ek

)+
.

For future reference, it is convenient to introduce the following non-dimensional
function CBS (v, k) of the annualized variance v and log-strike k:

(1.6) CBS (v, k) = Φ (d+)− ekΦ (d−) ,

where 0 < v <∞, −∞ < k <∞, and,

d± =
−k ± 1

2v√
v

.

In the limiting cases we have

CBS (0, k) =
(
1− ek

)+
, CBS (∞, k) = 1.
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It is clear that

C(t; τ ,K)

F (t)
= CBS

(
σimp(t; τ ,K)2τ , ln

(
K

F (t)

))
.

In most real markets, the market implied volatility function σimp(t; τ ,K) differs
very significantly from a constant, and may have considerable slope and convexity
as a function of K for both very small and very large values of τ . To understand
and explain this phenomenon, several alternative models have been proposed in the
literature. see, e.g., [94], [39], [59], [14], [4], [76] among others. Broadly speaking,
the available approaches can be categorized as follows:

• Local volatility (LV) models, where the instantaneous volatility σ of F is a
deterministic function of time and F .
• Stochastic volatility (SV) models, where σ is a random variable, possibly

correlated with F .
• Jump models, where the process for F is assumed to be a purely discontin-

uous jump-process.
• Universal volatility (UV) models, where local volatility, stochastic volatility,

and jump processes are combined.

Full-blown UV models are rarely used in practice, and instead markets tend
to converge around a simpler model that ultimately becomes a de facto market
standard. For instance, LV models are popular in the field of equity derivatives, and
jump-free combinations of LV and SV (known as LSV, or local-stochastic volatility,
models) are dominant in the FX options arena. Such usage of simplified models
is, however, rarely motivated by empirical facts, but instead are done for practical
reasons in recognition of the fact that models that combine LV, SV, and jumps
are often highly complicated to calibrate and implement. One particularly thorny
issue is the question of how precisely to mix LV, SV, and jumps, a problem that
is made especially vexing by the fact that even a simple model like LV can, on its
own, match essentially any arbitrage-free option volatility surface (see, e.g., [39]).

In UV models, there are several potential strategies for attacking the “mixing”
problem. As LV, SV, and jumps give rise to different dynamic evolution of the
volatility surface over time, one idea is to embed observations of the volatility dy-
namics into the model calibration problem (see, e.g., [6] for a discussion). A closely
related approach is to incorporate market-observable exotic option prices that are
sensitive to the evolution of volatility, e.g. variance options, barrier options, and
similar; this approach is commonly used in FX markets to mix LV and SV into
an LSV model. Yet another idea is to examine various extremes of the volatility
surface (short maturity, long maturity, large strikes, small strikes) and attempt to
understand which type of model feature (SV/LV/jumps) will control the asymp-
totic model behavior most strongly and most “naturally”. This information, in
turn, could then be used to inspire the model building process. To give an exam-
ple, consider that the convexity of σimp(t; τ ,K) around K = F (t) can often be
observed to be substantially higher for small option maturities than for larger ones.
A pure LV model would model this by letting the convexity (in F ) of the local
volatility function decay rapidly as a function of time. Such a model would, how-
ever, be highly non-stationary, an undesirable model feature that can be avoided
by introducing jumps or (mean-reverting) stochastic volatility.
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The idea of considering volatility function asymptotics is particularly attractive
from an analytical perspective, as one can often work out simple closed-form ex-
pressions for these asymptotics, even for complex models. For SV, LV, and LSV
models the procedure for generating such asymptotics is well-understood (see e.g.
[58] for a survey of recent results), and the range of validity for the resulting expan-
sions has been examined closely, generally with fairly satisfying results. Recently,
similar attempts have been undertaken for jump processes, especially for processes
in the so-called exponential Lévy class. More precisely, these models write

(1.7) F (t) = F (0)eX(t),

where X(t) is a Lévy process. In this setup, particular emphasis has been put
on the small-time asymptotic of C(t; τ ,K) for τ → 0 and K fixed at some level
different from F (t), see for instance [70], [105], [46], [48] among many others. A
typical result in this area of research is that

(1.8) δC (t; τ ,K) ∼ τ , K 6= F (t),

where ∼ indicates the leading order term as τ → 0. For this relation to be true,
the corresponding implied volatility must explode in the short-time limit. This line
of research is closely related in studying small time asymptotics for the densities
of Lévy processes, see, e.g., [67], [98], [107], [44], [45], [84], [18]. Small-time results
for at-the-money (ATM) options where K = F (t) are scarcer, but in [30] Tanaka’s
formula is used to demonstrate that

(1.9) C (t; τ , F (t)) ∼
{

τ , σ = 0,√
τ , σ 6= 0,

when X is a mixed jump-diffusion consisting of a Brownian motion with volatility σ
and a finite variation1 Lévy jump process. [116] further elaborates on this result in
implied volatility space, and demonstrates that for a finite variation Lévy process
(necessarily without a diffusion component)

(1.10) σimp (t; τ , F (t)) ∼
√

2πτ max

{∫
R

(ex − 1)
+
ν (dx) ,

∫
R

(1− ex)
+
ν (dx)

}
,

where ν(·) is the Lévy measure of X. In the presence of a diffusion component with
constant volatility σ, [116] shows that if∫

R
x2ν(dx) <∞,

then

σimp (t; τ , F (t)) ∼ σ
for τ → 0. Other relevant papers about short-time option prices in models with
jumps include [2], [91], and [96].

As for long-maturity and extreme strike asymptotics, the literature is generally
quite sparse. Under mild regularity conditions, [117], [103] use large deviation
principles to demonstrate that the implied volatility surface will always flatten out
for large enough maturities and finite strikes, irrespective of the underlying process
assumptions, which agrees with earlier observations by [11]. For exponentiated Lévy
processes, the authors list explicit formulas tying the long-time volatility asymptote
to moments of F . Extreme strike asymptotics for the specific case of Lévy processes

1See Section 3 for a definition of various attributes of Levy processes.



6 LEIF ANDERSEN AND ALEXANDER LIPTON

follow from the moment formulas of [69], [15], [16] and [55]; see [116] for a brief
discussion.

Overall, while some progress has been made in recent years, the available asymp-
totic results for jump processes are limited when compared to the literature for LV
and SV diffusion processes. In particular, little is known about the range of validity
of jump process asymptotics, in part due to the difficulty of establishing accurate
numerical option prices for Lévy processes, especially in the short-time limit. In
this paper, we add to the literature in several ways. First and foremost, we com-
pletely characterize the τ and K volatility surface asymptotes for the important
class of (exponentiated) tempered stable Lévy processes, with and without a dif-
fusive component. In addition, we also list a number of asymptotic expansions for
the Merton jump-diffusion and the NIG (Normal Inverse Gaussian) process. Note
that our results cover not only the level of the volatility surface, but also its slope
and convexity – properties that are highly relevant when calibrating a model to ob-
served option prices2. We mainly work in Fourier space using the Lewis-Lipton call
option representation [72], [76], and our primary tools for asymptotic expansion are
the dominated convergence theorem (for the short-time limits) and classical com-
plex variable techniques, such as the saddlepoint theorem (for long-dated options)
and high-frequency Fourier asymptotics (for large and small strike limits). For
testing and illustration purposes, we present several closed-form option prices for
special cases of the tempered stable Lévy process, and also list some results for the
computation of Green’s function. Further, we draw attention to the applicability
of fractional differentiation in characterizing the PIDE (partial integro-differential
equation) that governs option prices in the tempered stable model class; these re-
sults allows one to draw on modern numerical algorithms when pricing both vanilla
and exotic options. As an example, we develop an operator splitting method which
is O

(
N2
)

complex and second order accurate in time and space. The idea is to
split jumps into positive and negative and treat them separately on each step; the
problem then boils down to the inversion of Hessenberg matrices which may be ac-
complished via the generalized Thomas algorithm in O

(
N2
)

operations. A regular
diffusion can be added as an additional iteration, as needed.

To test and motivate our asymptotic results, our primary focus in this paper is
on FX options markets. These markets are of interest to us for two reasons: i) very
short-dated options actively trade in this market (it is not uncommon for dealers to
quote on options with a maturity being just a few hours); and ii) volatility quoting
conventions in these markets use the option delta ∆ (see (1.3)), rather than the
strike K. At first glance the delta quotation standard may appear to be a nuisance,
since additional translation from the delta space into the strike space is needed, but
on second thought it becomes apparent that this construct has deep mathematical
roots. Specifically, quoting volatility as a function of delta is closely related to the
so-called resolution of singularities frequently used in algebraic geometry and other
mathematical disciplines (see [9]). Our tests disprove a number of “urban myths”
about Lévy process asymptotics, especially regarding the range of applicability of
short- and long-time asymptotics.

Our paper is organized as follows. Section 2 provides a very brief introduction to
FX volatility quotation standards, and introduce the concepts of risk reversals and

2Indeed, in FX markets it is standard to effectively quote directly on smile slope and convexity,
see Section 2.
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straddles (also known as butterflies). We examine some representative market data
for implied volatility, and highlight how the short-dated asymptotics are unnatural
in a diffusion setting. Section 3 gives an overview of Lévy processes, with an
emphasis on the tempered stable class and the fractional derivative representation
of the corresponding option pricing equation. It also discusses both conventional
and novel numerical methods for the tempered stable class which capitalize on their
interpretation as fractional derivatives. Section 4 discusses some representative
examples. Section 5 introduces the Lewis-Lipton formula which is the main working
tool for establishing all our asymptotic results. It also discusses calibration of
the corresponding stochastic processes to market data introduced in Section 2.
Section 6 discusses the asymptotic behavior of the BSM formula which is used
subsequently in order to analyze the behavior of implied volatility. Sections 7, 8
study long-time and short-time asymptotics, respectively, and Section 9 deals with
wing asymptotics. Besides deriving theoretical results, Sections 7, 8, 9 also contain
a series of numerical tests aimed at establishing their practical relevance. Finally,
conclusions are drawn in Section 10. Appendices contain some of the more elaborate
proofs and other useful material.

2. Background on FX Market

The FX options market is one of the largest over-the-counter options markets
in the world, yet its conventions are quite idiosyncratic and differ markedly from
those used in other derivatives markets (e.g., interest rates and equities). Moreover,
almost every concept of importance can be interpreted differently, often depending
on the currency pair in question, which makes systematic analysis and comparison of
FX options particularly difficult. There are both historical and financial reasons for
the existence of FX quotation styles, the most obvious being that FX transactions,
unlike many other financial transactions, are inherently symmetric in nature, in the
sense that units of currency are exchanged into units of currency (see, e.g., [75]).

In FX markets, it is standard practice to represent the volatility smile in terms
of the option delta, rather than in terms of the option strike. We may define

(2.1) Σ(t; τ ,∆) = σimp (t; τ ,K)

where ∆ is the delta defined in (1.3). The map between ∆ and K is monotonic, so
(2.1) is always well-defined. We should note that several other definitions of delta
than (1.3) exist in the FX market, not all of which are monotonic in strike3; for our
purposes, we ignore this complication and just refer to [102] and [33], among many
other sources, for additional information on various delta definitions.

In the FX options markets, the function Σ(t; τ ,∆) is normally liquidly quoted
at only three different levels of delta: 0.25, 0.50, and 0.75. Somewhat confusingly,
only Σ(t; τ , 0.5) is directly quoted (the at-the-money volatility4 σATM , where K =
F (t)), whereas Σ(t; τ , 0.25) and Σ(t; τ , 0.75) must be constructed from quotes for

3For instance, the so-called premium-adjusted (forward) delta Φ(d−)K/F is not mononic in

K.
4In real FX options markets, the ATM strike may actually deviate slightly from K = F , as

additional conventions govern the choice of the at-the-money strike. For instance, a common
alternative is to use the delta-neutral strike K = F exp(σ2

impτ/2), which is the strike level where

the absolute magnitude of put and call deltas are identical.
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risk-reversals (RRs) and butterflies (BFs) (also known as strangles). The relevant
formulas5 are

σATM (t; τ) = Σ(t; τ , 0.5),

RR(t; τ) = Σ(t; τ , 0.75)− Σ(t; τ , 0.25),

BF (t; τ) =
1

2
(Σ(t; τ , 0.75) + Σ(t; τ , 0.25)− 2σATM (t; τ)) ,

which trivially allows us to construct Σ(t; τ , 0.75) and Σ(t; τ , 0.25) from knowledge
of σATM , RR, and BF . It is clear that the RRs and BFs are closely related to the
slope and convexity, respectively, of Σ(t; τ ,∆) around ∆ = 0.5. Specifically, we can
write (omitting arguments)

(2.2) RR ≈ 1

2

∂Σ

∂∆
; BF ≈ 1

32

∂2Σ

∂∆2
,

where the derivatives are evaluated around ∆ = 0.5.
In Table 1 below, we show some sample market quotes for σATM (τ), RR (τ),

and BF (τ) for the USD/JPY currency pair. We highlight that the figure suggests
the existence of non-zero finite limits for all three quotes σATM , RR, and BF as
τ approaches zero. From (2.2), this essentially translates into non-zero finite limits
for both ∂Σ/∂∆ and ∂2Σ/∂∆2 around the ATM point.

1d 1w 2w 1m 2m 3m 6m 1y 2y 3y 4y 5y

ATM 9.87 12.15 11.27 10.35 10.34 10.52 11.04 11.80 12.90 13.80 14.30 15.05
RR25 -1.25 -1.00 -0.46 -0.30 -0.16 -0.10 -0.05 -0.02 -0.35 -0.78 -1.20 -1.48
BF25 0.30 0.30 0.30 0.30 0.32 0.33 0.46 0.59 0.60 0.58 0.53 0.46
RR10 -2.22 -1.77 -0.79 -0.49 -0.22 -0.09 0.07 0.18 -0.50 -1.41 -2.30 -2.86
BF10 1.11 1.08 1.03 1.02 1.08 1.12 1.54 1.98 2.11 2.22 2.28 2.29

Table 1. The behavior of σATM (τ) , RR (τ), and BF (τ) (ex-
pressed in per cent) for USD/JPY on March 30th, 2012. RR25
and RR10 are the risk-reversals at ∆ = 0.25 and ∆ = 0.10, respec-
tively (and similar for BF25, BF10).

To understand the implications of Table 1 for the volatility smile in strike space,
recall our definition of log-moneyness k = ln(K/F (t)) and notice that

(2.3)
∂Σ

∂∆
= −∂σimp

∂k

√
2πτ,

∂2Σ

∂∆2
=

(
∂2σimp
∂k2

− 1

2

∂σimp
∂k

)
2πτ,

where the derivatives are taken around ∆ = 0.5 or, equivalently, k = 0. To match
non-zero limits of ∂Σ/∂∆ and ∂2Σ/∂∆2 for τ → 0, we evidently need both the
smile skew ∂σimp/∂k and the smile convexity ∂2σimp/∂k

2 to approach infinity at

k = 0 for small τ , at rates of τ−1/2 and τ−1, respectively. Such a requirement,
however, would rule out that FX dynamics are driven by a pure diffusion process
(such as LSV models), since it is known (see Section 8.3) that such processes always

5We are omitting some complications in the definition of risk reversals and butterflies. Besides

being imprecise about the correct definitions of delta and the ATM strike, we have chosen to define

the butterflies as so-called smile stranges, rather than the more common market strangles. The
latter definition can be found in [33] and, unfortunately, does not allow one to uniquely extract

Σ.
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result in a finite limit of ∂σimp/∂k at k = 0. Motivated by this observation, we
proceed below to introduce the class of Lévy processes.

The data in Table 1 can be converted (with the aid of interpolation and extrap-
olation) into the function Σ (τ ,∆). The result is shown in Figure 1. It is clear that
the FX options exhibit strong smile for short and medium maturities.
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Figure 1. USDJPY implied volatility surface. The quotes are for
March 30th, 2012.

3. Background on Exponential Lévy Processes

3.1. Basic Setup. In this section we consider exponential Lévy processes (ELPs).
General properties of these processes are discussed in detail by numerous researchers,
see, e.g., [21], [109], [8], among many others. The realization that these processes
have important applications to finance can be traced back to [83] (and, in fact, to
much earlier work); these applications are discussed in many books and papers, see,
e.g., [41], [17], [101], [13], [24], [111], [7], [34], to mention just a few.

LetX(t) be a Lévy process, i.e. a cadlag process with stationary and independent
increments, satisfyingX(0) = 0. It is known that every Lévy process is characterized
by a triplet (γ̄, σ, ν), where γ̄ and σ are constants, and ν is a (possibly infinite)
Radon measure, known as the Lévy measure. The Lévy measure must always satisfy

(3.1)

∫
R

min
(
x2, 1

)
ν(dx) <∞.

To characterize the infinitesimal generator of a Lévy process, let E be the expecta-
tion operator, and define

V (t, x) = E (VT (X(T ))|X(t) = x)
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for some suitably regular function VT (·). It can be shown that V solves a partial
integro-differential equation (PIDE) of the form

Vt + γ̄Vx +
1

2
σ2Vxx +

∫
R

(
V (t, x+ y)− V (t, x)− y1|y|≤1Vx (t, x)

)
ν(dy) = 0,

subject to the terminal condition V (T, x) = VT (x). More conveniently, we write
this PIDE as
(3.2)

Vt+γVx+
1

2
σ2 (Vxx − Vx)+

∫
R

(
V (t, x+ y)− V (t, x)− y1|y|≤1Vx (t, x)

)
ν(dy) = 0,

where γ = γ̄ + σ2/2. Loosely speaking, (3.2) demonstrates that any Lévy process
X(t) is the sum of a deterministic drift term γt, a scaled drift-adjusted Brownian
motion σW (t)− σ2t/2, and a pure jump process.

By choosing VT (x) = exp(iux) and solving (3.2) through an affine ansatz

V (t, x) = exp(ψ(u)(T − t) + iux),

one arrives at the famous Lévy-Khinchine formula,

φ(t, u) , E
(
eiuX(t)

)
= exp (ψ(u)t) ,

(3.3) ψ(u) = γiu− 1

2
σ2u (u+ i) +

∫
R

(
eiux − 1− iux1|x|≤1

)
ν(dx), u ∈ R,

where ψ is the so-called Lévy exponent. In practice, a Lévy process may be specified
either by its exponent ψ or by its Lévy measure ν. It is frequently convenient to
split ψ(u) into two parts as follows

(3.4) ψ(u) = −1

2
σ2u(u+ i) + ψ0(u),

where ψ0(u) is the pure-jump and drift component of ψ(u).
Let F (t) > 0 denote the time t price of a financial asset, and consider modeling

its evolution as an exponential Lévy process of the type (1.7), where we wish for
F (t) to be a martingale in some pricing measure. For this, we impose that, for any
t > 0,

(3.5) E
(
eX(t)

)
= 1,

which requires that the first exponential moment of X(t) exists in the first place,
i.e. that large positive jumps be suitably bounded:

(3.6)

∫
|x|>1

exν(dx) <∞.

Equivalently, we require that φ(t, z) exists in the complex plane strip

S = {z ∈ C|Im(z) ∈ [−1, 0]},
and that

φ(t,−i) = exp

(
γt+ t

∫
R

(
ex − 1− x1|x|≤1

)
ν(dx)

)
= 1,

in order to satisfy condition (3.5). This implies the fundamental martingale con-
straint

(3.7) γ = −
∫
R

(
ex − 1− x1|x|≤1

)
ν(dx).



EXPONENTIAL LEVY PROCESSES 11

Using (3.7) to eliminate γ from (3.3), the martingale restriction on F allows us
to write the Lévy exponent in the form

(3.8) ψ(u) = −1

2
σ2u(u+ i) +

∫
R

(
eiux − 1− iu (ex − 1)

)
ν(dx).

Similarly, we may write the PIDE (3.2) as
(3.9)

Vt +
1

2
σ2 (Vxx − Vx) +

∫
R

(V (t, x+ y)− V (t, x)− (ey − 1)Vx (t, x)) ν(dy) = 0.

Whenever possible (see Section 3.2), it is often more convenient to use the fol-
lowing forms of the PIDE (3.2), namely,

(3.10) Vt + γ′Vx +
1

2
σ2 (Vxx − Vx) +

∫ ∞
−∞

(V (t, x+ y)− V (t, x)) ν(dy) = 0,

(3.11)

Vt + γ′′Vx +
1

2
σ2 (Vxx − Vx) +

∫ ∞
−∞

(V (t, x+ y)− V (t, x)− yVx (t, x)) ν(dy) = 0,

where

(3.12) γ′ = −
∫
R

(ex − 1) ν(dx) = γ −
∫
|x|≤1

xν(dx),

(3.13) γ′′ = −
∫
R

(ex − 1− x) ν(dx) = γ +

∫
|x|>1

xν(dx).

3.2. Classification of Exponential Lévy Processes. Depending on how “sin-
gular” the Lévy measure ν is, we can define various sub-groups of Lévy processes.
Each group allow us to decompose equations (3.3) and (3.2) in slightly different
ways.

3.2.1. Finite Activity. First, if the Lévy measure is finite (i.e., the jump component
of the process has finite activity), the resulting process for X(t) is a combination
of a Brownian motion and an ordinary compound Poisson jump-process. We may
then replace ν(dx) with

(3.14) ν(dy) = λ j(dy), λ ,
∫
R
ν(dx) <∞,

where j(dx) = ν(dx)/λ is now a properly normed probability measure for the
distribution of jump sizes in X, and λ is the (Poisson) arrival intensity of jumps.
In this case,

ψ(u) = γ′iu− 1

2
σ2u (u+ i) + λ

(∫
R
eiuxj( dx)− 1

)
,

where the martingale restriction requires that γ′ satisfies (3.12). Notice that if we
define a random variable J with density j(dx), then we can, in the finite activity
case, interpret

(3.15) ψ(u) = γ′iu− 1

2
σ2u (u+ i) + λ (φJ(u)− 1) ,

where φJ(·) is the characteristic function of the jump size6 J .

6Specifically, if a jump of size J takes place at time t, X(t−) goes to X(t+) = X(t−) + J and
S(t−) goes to S(t+) = S(t−)eJ .
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As for the PIDE (3.2), for finite activity processes it simplifies in an analogous
way to the simpler form (3.10):

Vt + γ′Vx +
1

2
σ2 (Vxx − Vx) + λ

∫
R
V (t, x+ y) j(dy)− λV = 0.

3.2.2. Finite Variation. The jump component of a Lévy process is said to have
finite variation if

(3.16)

∫
|x|≤1

|x|ν(dx) <∞.

Under this condition, truncation of the Lévy exponent ψ around the origin is not
necessary, and we may write

(3.17) ψ(u) = γ′iu− 1

2
σ2u (u+ i) +

∫
R

(
eiux − 1

)
ν( dx), γ′ = γ−

∫
|x|≤1

xν(dx).

For the PIDE (3.2), we then get the simpler form (3.10).

3.2.3. Finite First Moment. Finally, for the case where the first moment exists,

(3.18)

∫
R
|x|1|x|>1ν( dx) <∞,

we may write the Lévy exponent in purely compensated form:

ψ(u) = γ′′iu− 1

2
σ2u (u+ i) +

∫
R

(
eiux − 1− iux

)
ν( dx), γ′′ = γ +

∫
|x|>1

xν(dx).

The corresponding PIDE can then be written in the simpler form (3.11).
Going forward we shall often omit primes on γ and simply use γ to denote the

drift term of the PIDE, implicitly choosing the right one.

4. Examples of Exponential Lévy Processes

4.1. Tempered Stable Processes.

4.1.1. Definitions and Basic Facts. Establishing short-time ATM volatility smile
asymptotics for the completely generic class of exponential Lévy processes appears
to be a difficult problem, so we narrow our focus to classes of processes important
in applications. Of primary importance to us are processes characterized by Lévy
measures of the form

(4.1) ν(dx) =

(
c+
xα+1

e−κ+x1x>0 +
c−
|x|α+1

e−κ−|x|1x<0

)
dx,

where we require7 that κ+ ≥ 1, κ− ≥ 0, c+ ≥ 0, c− ≥ 0, and α < 2. The resulting
class of processes8 is known as tempered α-stable Lévy processes (TSPs), see, e.g.,
[64], [89], [23], [24], [25], [34], [106]. Occasionally, a different parametrization of the
Lévy measure is used

(4.2) ν(dx) = −
sec
(
απ
2

)
Γ(−α)

(
ϑα+
xα+1

e−κ+x1x>0 +
ϑα−
|x|α+1

e−κ−|x|1x<0

)
dx,

7The condition κ+ ≥ 1 is required to satisfy (3.6). In most literature, the condition is the less

tight κ+ ≥ 0.
8Only for α > 0 does the class behave like a stable process, but we here allow for α ≤ 0 to

include compound Poisson processes.
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ϑ+ ≥ 0, ϑ− ≥ 0, and sec (π/2) /Γ(−1) = −2/π. This parametrization is particularly
useful when one analyzes changes occurring when α crosses unity. Asymmetry of
the TSP is often characterized by the non-dimensional number β,

(4.3) β =
c+ − c−
c+ + c−

.

It is clear that TSPs are natural extensions of the classical α-stable Lévy processes
(SPs), where κ± = 0, see, e.g., [122], [108], [97].

The overall behavior of the TS class is closely tied to the selection of the power
α, as demonstrated in Table 2.

α Activity Variation

< 0 Finite Finite
(0, 1) Infinite Finite
[1, 2) Infinite Infinite

Table 2. The behavior of the TS Lévy class as a function of α.

Some important special cases of the TS class include:

• The KoBoL (CGMY) model, where c+ = c−, see [64], [89], [23], [25];
• The exponential jump model, where α = −1, see [65], [78];
• The Gamma process, where α = 0 and either c− = 0 or c+ = 0;
• The Variance Gamma model, where α = 0, see [82];
• The Inverse Gaussian process, where α = 1/2 and either c− = 0 or c+ = 0,

see [12], [13].

For some of the special cases above, explicit formulas exist for the density of
X(t) and for European call options. Section 4.1.4 lists such formulas for the Inverse
Gaussian process, which we use for testing various results later on.

When α 6= 0 and α 6= 1, the characteristic function for the TS Lévy process can
easily be shown to be, (see, e.g., [34],)

ψ(u) =
∑
s=±

Γ (−α) cs ((κs − siu)
α − iu (κs − s1)

α
+ (iu− 1)καs )(4.4)

=
∑
s=±

as (κs − siu)
α

+ γiu+ δ,

where

as = Γ (−α) cs = − sec
(απ

2

)
ϑαs , ζs = (καs − (κs − s)α) ,(4.5)

ηs = −καs , γ = a+ζ+ + a−ζ−, δ =
(
a+η+ + a−η−

)
.

We have imposed the martingale condition (3.7) to express γ as function of other
parameters. In (4.4) the complex power functions

(κ+ − iu)
α
, (κ− + iu)

α
,

are here (recall that α 6= 0, 1, 2) multi-valued functions, and an appropriate branch
cut is required. We need, as a minimum, that ψ(u) is regular for the strip S, i.e.
when u = u′ + iu′′, u′ ∈ R, u′′ ∈ [−1, 0]. In this strip, the two power functions
evaluate to

(κ+ + u′′ − iu′)α , (κ− − u′′ + iu′)
α
.
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As the real part of the argument of the power function is strictly positive in S, a
branch cut in the left half-plane (e.g., the usual principal value branch cut for the
logarithm) will therefore suffice.

Equation (4.4) holds only for α 6= 1 and α 6= 0 (and α < 2, of course). When
α = 0, we get

(4.6) ψ(u) =
∑
s=±

cs

(
log

(
κs

κs − siu

)
− log

(
κs

κs − s

)
iu

)
.

Proceeding as above, we can easily show that the arguments to the log-functions in
this expression are entirely in the right half-plane when Imu ∈ [−1, 0]; the principal
value of the logarithm will suffice. Finally, for the case α = 1, we have

ψ(u) =
∑
s=±

cs (κs − siu) log

(
κs − siu

κs

)
− (κs − s) log

(
κs − s
κs

)
iu.

Again, we may interpret log as the principal value of the logarithm.
By using (4.4) it is easy to show that the annualized standard deviation of a

TSP has the form

(4.7) stdev (X (1)) =

(
Γ (2− α)

(
c+

κ2−α
+

+
c−

κ2−α
−

))1/2

.

Equation (4.7) allows us to get an idea of the magnitude of the implied volatility
of ATM options on TSPs.

4.1.2. PIDEs and their Fractional Derivative Interpretation. Consider now the TS
Lévy class with an added Brownian motion with volatility σ. For α ∈ (0, 1) the
PIDE (3.10) applies, and has the form

(4.8) Vt + γ′Vx +
1

2
σ2 (Vxx − Vx) +

∑
s=±

cs

∫ ∞
0

(V (x+ sy)− V (x))
e−κsydy

y1+α
= 0.

For α ∈ (1, 2) the PIDE (3.11) can be used,
(4.9)

Vt+γ
′′Vx+

1

2
σ2 (Vxx − Vx)+

∑
s=±

cs

∫ ∞
0

(V (x+ sy)− V (x)− syVx (x))
e−κsydy

y1+α
= 0.

Interestingly, it is possible to rewrite both (4.8) and (4.9) in terms of so-called
fractional derivatives (see, e.g., [95], [100] for a survey, and [122] for a connection
to regular, non-tempered stable Lévy processes). The development of fractional
derivatives originated in the nineteenth century with Riemann, Liouville and Mar-
chaud among others (see, e.g., [85]), and traditionally starts with the well-known
Riemann-Liouville formula which allows one to reduce the calculation of an n-fold
integral to the calculation of a single convolution integral. This formula can be
extended in a natural way for α-fold integrals for any α > 0. Its extension for
negative α, which can be viewed as α-fold differentiation, can be done in several
different ways; we find that the so-called Caputo definition is the most convenient
for our purposes. For integer values of α, the Caputo derivative coincides with the
regular derivative of order α. For non-integer values of α, consider first α ∈ (0, 1),
and define left (s = −1) and right (s = 1) fractional derivatives of order α as follows
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Dα
s V (x) =

(−s)α

Γ (−α)

∫ ∞
0

(V (x+ sy)− V (x))
dy

y1+α
, s = ±.

Under some mild regularity assumptions we can perform integration by parts and
write

Dα
s V (x) =

(−s)α−1

Γ (1− α)

∫ ∞
0

dV (x+ sy)

dy

dy

yα
.

For all non-integer values of α ∈ (1,∞) we may then define

Dα
s V (x) =

(−s)α−1−bαc

Γ (1 + bαc − α)

∫ ∞
0

dbαc+1V (x+ sy)

dybαc+1

dy

yα−bαc
,

where bαc is the floor function, i.e., the largest integer such that bαc < α. Notice
that in general Dα

+V (x) is complex-valued even when V (x) is real-valued.
We emphasize that with this definition, irrespective of s,

Dα
s e
iux = (iu)αeiux,

consistent with what one would expect from a generalization of a regular derivative.

Lemma 4.1. For α ∈ (0, 2), α 6= 1, the PIDEs (4.8), (4.9) may be written

(4.10) Vt + γVx +
1

2
σ2 (Vxx − Vx) +

∑
s=±

(−s)α asesκsxDα
s

(
e−sκsxV

)
+ δV = 0,

where as, γ, δ are given by expression (4.5).

Proof. See Appendix A. �

Corollary 4.2. In particular, for non-tempered stable processes with κ± = 0, the
corresponding PIDE has the form

Vt +
1

2
σ2 (Vxx − Vx) +

∑
s=±

(−s)α as (Dα
s V − Vx) = 0.

4.1.3. Numerical Methods Based on Fractional Derivatives. The advantage of re-
stating the original pricing PIDEs as fractional differential equations is that we
may lean on a large body of literature on numerical methods for such equations.
These methods have been developed over the last twenty years due to the fact that
fractional differential equations have numerous physical applications, especially to
the so-called anomalous diffusions, see, e.g., [31], [112] among many others. In this
section we present some extensions of these methods for our setting where both left
(s = −1) and right (s = +1) derivatives must be considered simultaneously.

Before proceeding, let us remind the reader that an N ×N matrix H such that
hij = 0 when j ≤ i−2 (hij = 0 when j ≥ i+2) is called an upper (lower) Hessenberg
matrix. Such a matrix can be viewed as a generalization of a tri-diagonal matrix.
An equation of the form

(4.11) H~p = ~q,

can be solved for the vector ~p via an appropriate extension of the Thomas algorithm
for tri-diagonal matrices at the cost of O

(
N2
)

operations. The advantages of using
Hessenberg structure of the problem are manyfold (see [114]), the most obvious
being the ability to rely on highly parallelizable solvers. Hessenberg matrices nat-
urally arise when one wants to solve pricing equations with fractional derivatives.
When such derivatives are one-sided (or, equivalently, jumps are one-sided) we can
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naturally represent them via Hessenberg matrices on a grid by virtue of an appro-
priately discretized Dα

s . When they are two-sided, we can split the problem into
two and consider positive and negative jumps in turn at each step. Diffusion can
be added as needed. The Grünwald-Letnikov formula is often used for discretizing
fractional derivatives, see, e.g., [92], [38], [115]. However, it is more convenient to
discretize Dα

s directly, see, e.g., [113] for a discretization scheme that guarantees
that the resulting finite difference scheme is stable. In this discretization scheme,
fractional derivatives Dα

s in (4.10) turn into Hessenberg matrices Hαs ; while the
diffusion-advection term turns into a standard tri-diagonal matrix D. In order to
take full advantage of the nature of the matrices Hαs ,D, we solve a generic evo-
lution equation of the form (4.10) by splitting a typical time step tm+1 → tm,
~V m+1 → ~V m into three, ~V m+1 → ~V ∗, ~V ∗ → ~V ∗∗, ~V ∗∗ → ~V m as follows:(

I − 1

2
∆tHα+

)
~V ∗ =

(
I +

1

2
∆tHα+

)
~V m+1,(

I − 1

2
∆tHα−

)
~V ∗∗ =

(
I +

1

2
∆tHα−

)
~V ∗,(

I − 1

2
∆tD

)
~V m =

(
I +

1

2
∆tD

)
~V ∗∗.

It is clear that at the first and second intermediate steps we have to solve a Hes-
senberg system of equations, while at the third step we need to solve a tri-diagonal
system of equations. We illustrate the scheme by numerically constructing the
probability density function (PDF) of a typical TSP in two different ways, namely
by solving the corresponding PIDEs and by numerically calculating its integral
representation. Our results are shown in Figure 2, and it is clear that our method
reproduces the corresponding PDF very accurately.

There are several well-known Fourier-transform-based and approximation-based
approaches to solving the corresponding pricing equation in the spatially homoge-
neous case, see, e.g., [4], [10], [36], [32], [120], [60], [79], so, if this was the only
case one is interested in, it would not be worthwhile adding yet another method
to this set. However, to the best of our knowledge, none of these methods can
be straightforwardly extended to the inhomogeneous case, nor to the case when
barriers are present. Our method on the other hand can be extended to cover these
cases almost verbatim.

4.1.4. Maximally Skewed Stable Processes. If we set κ+ = κ− = 0, the Lévy mea-
sure (4.1) becomes that of a regular stable process. This type of process has limited
applications in finance, as we only can satisfy the martingale restriction (3.5) if we
mandate that c+ = 0 (β = −1, where β is given by (4.3)), i.e. when all jumps
are negative. The resulting process is sometimes known as the maximally nega-
tively skewed stable process, and has received some interest in the literature, see
[29]. The characteristic exponent for such processes is known in closed form. Using
parametrization (4.2) and assuming that the process is a martingale, ψ(u) can be
defined as follows

(4.12) ψ(u) =

{
ϑα sec (απ/2) (iu− (iu)α) , α 6= 1,

2
πϑiu ln(iu), α = 1,

in the complex strip S defined by Im (u) ∈ [−1, 0]. Despite the fact that jumps
can only “go down” when β = −1, the already present drift-correction around the
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Figure 2. Numerical and analytical PDFs for a TSP. For com-
parison, PDFs for the moment-matched Gaussian process is shown
as well, see (4.7). The corresponding parameters are α = 1.50,
σ = 0.01%, c+ = 0.0069, c− = 0.0063, κ+ = 1.9320, κ− = 0.4087.
The choice of parameters is justified in Section 5.5.

origin in the Lévy-Khinchine theorem makes the resulting process a martingale for
α = 1, so no additional drift correction is necessary.

Remark 4.1. There are three classical cases when the PDF for the stable Lévy
process can be calculated explicitly: i) α = 1/2, β = ±1 (Lévy distribution); ii)
α = 1, β = 0 (Cauchy distribution); iii) α = 2, 1 ≤ β ≤ 1 (Gaussian distribution).
Of these three cases, for option pricing purposes the only nontrivial case is α = 1/2
and β = −1, where

ν(dx) =

√
2ϑ

2
√
π (−x)

3/2
1x<0dx.

Here, the distribution of X(t) is

(4.13) P (X(t) ∈ [x, x+ dx]) =
ι

2
√
π

exp
(
− ι2

4(ι−x)

)
(ι− x)

3/2
1x<ιdx,

where ι =
√

2ϑt and condition (3.5) is clearly satisfied, so that exp(X(t)) is a
martingale. Notice that in this case X(t) is bounded from above by ι, which may
not be particularly realistic. Still, for testing purposes it is worthwhile developing
this case further, so Proposition 4.3 develops an analytic call option formula for
this model.
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In order to avoid possible confusion, we call the maximally skewed Lévy process
with α = 1/2, β = ±1, the Lévy-Gauss Process (LGP). By doing so we emphasize
the so-called duality relation between the Lévy process with α = 1/2, β = ±1, and
the standard Gaussian process with α = 2, see, e.g., [122].

Maximally skewed stable processes possess are scaling invariant, which allows
one to write their Green’s functions in a simple form. Interestingly, a maximally
skewed tempered stable process (c+ = 0 and κ− > 0) can be transformed into a
maximally skewed stable process (c+ = 0 and κ− = 0). This result, which is listed
in Appendix B, allows us to represent the Green’s function for maximally skewed
tempered stable process in closed form. It also allows us to derive closed-form call
option prices for certain TSPs, which shall be useful later on for testing purposes.
For instance, we have:

Proposition 4.3. Consider the price of a T -maturity, K-strike call option in an
exponential tempered Lévy-Gauss process with α = 1/2 and c+ = 0. Set ι =

√
2ϑτ ,

ι1 =
√
κ−ι, ι2 =

√
κ− + 1ι, and k = ln(K/F (t)). Further, assume that k < ι2 − ι1,

and set

v =
2ι2

(ι2 − ι1 − k)
.

We then have

C (t;T,K)

F (t)
= CGL (τ , k) ,(4.14)

CGL (τ , k) = eι2D (v, 2ι2)− ek+ι1D (v, 2ι1) ,

where D (v, k) is the symmetrized version of the Black-Scholes price given by

(4.15) D (v, k) = e−
k
2

(
1− CBS (v, k)

)
= e−

k
2 Φ (−d+) + e

k
2 Φ (d−) .

Proof. See Appendix B. �

Similar formulas, albeit in a somewhat different context are given in [54].

Remark 4.2. When α = 1/2, c+ = 0, the price process F (T ) is always bounded
from above by

Fmax (t, T ) = F (t)eι2−ι1 .

A similar bound exists for all α < 1. Paradoxically, when α ≥ 1 and c+ = 0, F (T )
can take any value in (0,∞), despite all jumps being strictly negative.

4.2. Normal Inverse Gaussian Processes. As we have seen earlier, in some
cases Lévy processes (such as a tempered Lévy-Gauss process) are localized on a
semi-axis. Processes of that nature can be used in order to create new interesting
processes by changing time for the regular Brownian motion. Below we discuss some
examples along these lines. A useful aspect of this approach is that it generates
Lévy processes with PDFs known in closed form. One of the well-known examples
is the so-called Variance Gamma process (VGP), which is a special case of a TSP
with α = 0, see, e.g., [82]. Another popular choice is the so-called Normal Inverse
Gaussian process (NIGP), see, e.g., [12], [42], which we consider in some detail.

The Inverse Gaussian (IG) process describes the density of the hitting time τ
of a level κ1t by a standard Brownian motion with volatility σ1 and drift κ1. Our
choice of parameters ensures that E (τ) = t. It is easy to verify that IGP as a
TSP with α = 1/2, β = 1, κ+ = κ2

1/2σ
2
1. It is clear that IGPs and TLGPs are
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closely related and can be transformed into each other via shift and reflection. IG
process can be used as a subordinator in order to build the NIGP out of a standard
Brownian motion.

The NIGP can be obtained by time changing of a standard Brownian motion
with volatility σ and drift −σ2/2. The drift is chosen in a way ensuring that the
corresponding NIG is a martingale. The corresponding subordinator is distributed
as a hitting time of a level κ1t by an independent BM with volatility σ1 and drift
κ1. The convolution of these two processes yields

(4.16) fNIG (t, x) =
ω̄κ̄σ2te−

x
2 +κ̄2σ2t

π
√
x2 + κ̄2σ4t2

K1

(
ω̄
√
x2 + κ̄2σ4t2

)
,

where K1 (.) is the modified Bessel function, and ω̄ =
√

κ̄2 + 1/4, κ̄ = κ1/σ1σ.
The corresponding Lévy exponent and density have the form

ψNIG (u) = σ2κ̄
(
κ̄ −

√
κ̄2 + u (u+ i)

)
,

νNIG (dx) =

(
lim
t→0

f (t, x)

t

)
dx =

σ2ω̄κ̄e− x2
π |x|

K1 (ω̄ |x|) dx, x 6= 0.

Although NIGPs are not a special case of TSPs, they are closely related to TSPs
with α = 1/2 and α = 1, due to the fact that

K1 (ω̄ |x|) ∼
|x|→0

1

ω̄ |x|
, K1 (ω̄ |x|) ∼

|x|→∞

√
π

2ω̄ |x|

(
1 +

3

8ω̄ |x|

)
e−ω̄|x|,

so that

νNIG (dx) ∼
|x|→0

σ2κ̄e− x2
π |x|2

, νNIG (dx) ∼
|x|→∞

σ2
√
ω̄κ̄

√
2π |x|3/2

e−( x2 +ω̄|x|).

In the spirit of formula (1.6), the price of a call option with log-strike k can be
written in the form

(4.17)
CNIG (t;T,K;σ,κ1, σ1)

F (t)
= CNIG (v, k; κ̄) ,

where, as usual, v = σ2τ , and

(4.18) CNIG (v, k; κ̄) =
ω̄κ̄veκ̄2v

π

∞∫
k

(
e
x
2 − ek− x2

)
√
x2 + κ̄2v2

K1

(
ω̄
√
x2 + κ̄2v2

)
dx.

Clearly, the normalized call price for a NIGP CNIG depends on one non-dimensional
parameter. (Recall that CBS does not depend on any parameters.) In Section 5 we
derive an alternative integral representation for CNIG, given by the Lewis-Lipton
formula. We use one or the other of these two expressions as convenient.

As before, it is easy to compute the annualized standard deviation of a NIGP.
The corresponding expression has the form

(4.19) stdev (X (1)) =
ω̄σ

κ̄
.

Remark 4.3. We note in passing that the so-called Generalized Inverse Gaussian
(GIG) processes can be viewed as a natural generalizations of IGPs. In general, the
density of such a process is not known analytically, while its Lévy density is given
by a fairly complicated expression, so that GIG process is not easy (or necessary)
to use in practice. It is not in the TSP class in any case.
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4.3. Merton Processes. One popular process that is not related to the tempered
stable class is the (pure-jump) Merton process (MP), with

νM (dx) =
λ√
2πη

e
− (x−µ)2

2η2 dx.

This process has finite activity, so we may use (3.15) to establish ψ(u). We get∫
R

[
eiux − 1

]
ν(dx) = λ

(
eiuµ−

1
2η

2u2

− 1
)
,

so, for a pure-jump MP,

(4.20) ψ(u) = λ
(
eiuµ−

1
2η

2u2

− 1
)

+λ
(

1− eµ+ 1
2η

2
)
iu = λ

(
eiuµ−

1
2η

2u2

− 1
)

+γiu,

where γ = λ (1− eq) , q = µ + 1
2η

2. The corresponding PDF can be calculated
explicitly,

f (t, x) = e−λt
∞∑
n=0

(λt)
n

n!
fn (t, x) ,

fn (t, x) =

{
δ (x− γt) , n = 0,

1√
2πnη

e
− (x−γt−nµ)2

2nη2 , n > 0,

It can be shown easily that

νM (dx) =

(
lim
t→0

f (t, x)

t

)
dx = λf1 (0, x) =

1√
2πη

e
− (x−µ)2

2η2 , x 6= 0.

A simple calculation yields the following expression from [94] for the price of a call
option

CM (t;T,K;λ, µ, η)

F (t)
= CM (v, k;λ, µ, η) ,(4.21)

CM (v, k;µ, η) =

∞∑
n=0

cnC
BS
(
nη2, l − nq

)
,

where

cn = e−e
qv (eqv)

n
/n!, l = k − (1− eq) v, v = λτ.

Analysis of MPs with diffusion component is very similar to the one performed
above. The corresponding characteristic function has the form

ψ(u) = −1

2
σ2u (u+ i) + λ

(
eiuµ−

1
2η

2u2

− 1
)

+ γiu,

while the price of a call option can be written as follows

CM (t;T,K;λ, µ, η)

F (t)
= CM (v, k; σ̂, µ, η) ,

CM (v, k; σ̂, µ, η) =

∞∑
n=0

cnC
BS
(
σ̂2v + nη2, l − nq

)
,

where cn, l have the same form as before, and σ̂ = σ/
√
λ.

The annualized standard deviation of a MP has the form

(4.22) stdev (X (1)) =
(
σ2 + λ

(
µ2 + η2

))1/2
.
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Once again, this formula allows us to get a rough estimate of the magnitude of the
implied volatility of ATM options on MPs.

5. The Lewis-Lipton Option Price Formula and its Implications

5.1. Exponential Lévy Processes. The key formula allowing one to analyze
option prices for Lévy processes is known as the Lewis-Lipton (LL) formula; it has
been independently proposed by Lewis [72] and Lipton [76]. This formula is based
on the Fourier transform of an appropriately modified payoff of the call option. A
complementary method is proposed in [27]; additional information can be found in
[68].

Proposition 5.1. The normalized price of a call option written on an underlying
driven by an exponential Lévy process with Lévy-Khinchine exponent ψ has the form

(5.1) C (τ , k) = 1− 1

2π

∫ ∞
−∞

E (τ , u)

Q (u)
e−k(iu−

1
2 )du.

Here

(5.2) E (τ , u) = exp (τυ (u)) = exp

(
τ

(
υ0 (u)− 1

2
σ2Q (u)

))
,

(5.3) υ (u) = ψ

(
u− i

2

)
, υ0 (u) = ψ0

(
u− i

2

)
, Q (u) = u2 +

1

4
.

and ψ0 is given by (3.4).

Proof. See [71], [72], [75], [76]. �

As a corollary, we have:

Corollary 5.2. The derivatives with respect to k of the normalized price of a call
option are

Ck (τ , k) = − 1

2π

∫ ∞
−∞

E (τ , u)

Q (u)
e−k(iu−

1
2 )
(
−iu+

1

2

)
du,(5.4)

Ckk (τ , k) = − 1

2π

∫ ∞
−∞

E (τ , u)

Q (u)
e−k(iu−

1
2 )
(
−iu+

1

2

)2

du.(5.5)

Applying this result to the processes introduced in Section 4 we easily get the
following lemma.

Lemma 5.3. For TSPs, NIGPs, and MPs, the corresponding E (τ , u) have the
form

ETS (τ , u) = exp

(
τ

(
−1

2
σ2Q (u) +

∑
s=±

as

(
κs − s

(
iu+

1

2

))α
+ γ

(
iu+

1

2

)
+ δ

))
,

ENIG (τ , u) = exp
(
τσ2κ̄

(
κ̄ −

√
ω̄2 + u2

))
,

EM (τ , u) = exp

(
τ

(
−1

2
σ2Q (u) + λ

(
eq(iu+ 1

2 )− η
2

2 Q(u) − 1 + (1− eq)
(
iu+

1

2

))))
.
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Remark 5.1. It is worth mentioning that ETS (τ , u) and ENIG (τ , u) rapidly decay
when |u| → ∞, so that computation of the integrals (5.1), (5.4), and (5.5) is
straightforward. When σ 6= 0, EM (τ , u) is rapidly decaying as well. However,
when σ = 0, the situation is more difficult. The corresponding integrals (5.1), (5.4)
for this case can be computed efficiently by using

EM,∞ (τ , u)

Q (u)
=

exp
(
λτ
(
−1 + (1− eq)

(
iu+ 1

2

)))
Q (u)

,

as a control variate.

Remark 5.2. In the case of a BSM diffusion process, (5.1) yields

CBS (v, k) = 1− 1

2π

∫ ∞
−∞

e−
1
2 vQ(u)−k(iu− 1

2 )

Q (u)
du,

so that

(5.6)
1

2π

∫ ∞
−∞

e−
1
2 vQ(u)−k(iu− 1

2 )

Q (u)
du = Φ

(
k√
v
− 1

2

√
v

)
+ ekΦ

(
− k√

v
− 1

2

√
v

)
.

In the limiting case v = 0, we get

(5.7)
1

2π

∫ ∞
−∞

e−k(iu−
1
2 )

Q (u)
du = ek

−
.

These useful formulas shall be used repeatedly in what follows.

The usefulness of the LL formula becomes apparent when one wants to study
the asymptotic behavior of the call price and its derivatives (the Greeks) in the
limiting cases of τ → 0, τ →∞, |k| → ∞, since it allows one to use enormous body
of work dedicated to the asymptotics of integrals depending on large and small
parameters. This is done in the remainder of the paper where it is shown how to
apply the saddlepoint method, the high frequency Fourier integrals estimates, and
other tricks to the problem at hand. We return to these asymptotics in Sections 7,
8, 9. While this is not the focus of this paper, the LL formula can also be used to
study the small jump asymptotics, as is briefly shown in the next section.

5.2. Small jumps asymptotics. When the jump component of a Lévy process is
small compared to its diffusion component, by expanding E (τ , u) in (5.2), the call
price can be written in the form

C (τ , k) = 1− 1

2π

∫ ∞
−∞

e−
1
2σ

2τQ(u)−k(iu− 1
2 )

Q (u)
du(5.8)

− τ 1

2π

∫ ∞
−∞

e−
1
2σ

2τQ(u)−k(iu− 1
2 )

Q (u)
υ0 (u) du+ ...,

where υ0 (u) is given in (5.3), provided that the second integral converges. This
expression is particularly useful for the qualitative study of perturbations of the flat
volatility surface caused by jumps. Indeed, by comparing (5.8) with the expansion
of the BS formula around σimp = σ and matching terms, the implied volatility
surface can be represented in the form

σimp (τ , k) = σ + σ1 (τ , k) + ...,
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where σ1 is of the same order of magnitude as υ0, and is given by the following
expression

σ1 (τ , k) = τ1/2 e
k2

2σ2τ

√
2π

∫ ∞
−∞

e−
1
2σ

2τu2−iku

Q (u)
υ0 (u) du

= τ1/2 1√
2π

∫ ∞
−∞

e
− 1

2

(
στ1/2u+ ik

στ1/2

)2

Q (u)
υ0 (u) du.

A similar formula, albeit derived in a much more complicated way, is given in [90].

5.3. Quadratic Volatility Processes. On rare occasions, formulas similar to the
LL formula can be used for spatially inhomogeneous processes as well. The best-
known example are the so-called quadratic volatility processes (QVPs), which we
shall briefly describe below. The reader is referred to [76] and [3] for further details.
The reason why these processes are considered alongside ELPs is due to the fact
that after appropriate transforms they can be made translationally invariant, see,
e.g., [75], [76], [26].

When the volatility is quadratic, (including the limiting case when it is linear),
the dynamics of the corresponding underlier is driven by the following local volatility
SDE

dF (t) = σNloc (F (t)) dW (t) , F (0) = F0,

where

σNloc (F ) = aF 2 + bF + c, a > 0.

Consider the following quadratic equation

(5.9) σNloc (F ) = 0.

If we want to ensure that σNloc (F ) > 0 for 0 < F < ∞, we have to consider two
possibilities: (A) (5.9) negative real has roots; (B) (5.9) has complex roots. For
brevity, we concentrate on the second possibility, which is most often what real
market data dictates, and write

σNloc (F ) = a
(

(F − p)
2

+ q2
)
, q >0.

It turns out that in the case in question the following proposition holds.

Proposition 5.4. In the case when volatility is quadratic with complex roots, we
can represent the price of a call option using an eigenfunction expansion represen-
tation in the form

C (t; τ ,K)

Ft
= 1− 1

Ft (p sin (XFt) + q cos (XFt))

(5.10)

×
∞∑
l=1

e−
1
2vR(kl)

R (kl)
(ζs sin (2klXK)− 2klζ

c cos (2klXK)) sin (2klXF ) ,
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where Ft = F (t), v = 4a2q2τ , kl = πl/2X∞, and

XFt =

(
arctan

(
Ft − p

q

)
+ arctan

(
p

q

))
,

XK =

(
arctan

(
K − p

q

)
+ arctan

(
p

q

))
,

X∞ =

(
π

2
+ arctan

(
p

q

))
,

ζs =
1

2X∞

((
p2 + q2 −Kp

)
cos (XK) +Kq sin (XK)

)
,

ζc =
1

2X∞

((
p2 + q2 −Kp

)
sin (XK)−Kq cos (XK)

)
.

Proof. See [76], [3]. �

Remark 5.3. Expression (5.10) is more compact, but equivalent, to the one given
in [3]. As in [3], solution based on the method of images is also possible. As usual,
the eigenfunction expansion based solution and the method of images based solution
should be used when τ →∞ and τ → 0, respectively.

Remark 5.4. It is worth noting that drift-free processes with quadratic volatility
are not martingales, but rather supermatingales, see., e.g., [3]. As a consequence,
the solution of the corresponding pricing problem is not unique and a proper one has
to be chosen. Such a choice is implicitly done above. Non-uniqueness also means
that there are (many) non-zero solutions of the pricing problem with zero initial
and boundary conditions. To demonstrate, assume for brevity that p = q = 0, so
that

σNloc (F ) = aF 2, a > 0.

The corresponding homogeneous pricing problem can be represented as follows:

Vτ −
1

2
a2F 4VFF = 0,

V (0, F ) = 0, V (τ , 0) = 0.

It can be shown that the generic non-trivial solution of the above problem has the
form

V (τ , F ;h) =
1

a

∫ τ

0

e−(2a2F 2(τ−τ ′))
−1√

2π (τ − τ ′)3
h (τ ′) dτ ′.

In particular, when h (τ) = 1, we have

V (τ , F ; 1) = 2FΦ

(
− 1

aF
√
τ

)
.

5.4. Heston Stochastic Volatility Processes. Another important case when
the LL formula can be used successfully is the so-called Heston model9. Heston

9We note in passing that many of our results are applicable for other cases, for instance, for
the Stein-Stein stochastic volatility processes.



EXPONENTIAL LEVY PROCESSES 25

stochastic volatility processes (HSVPs) are governed by a system of SDEs of the
form

dF (t) =
√
$ (t)F (t) dW (F ) (t) , F (0) = F0,

d$ (t) = κ (θ −$ (t)) dt+ ε
√
$ (t)dW ($) (t) , $ (0) = $0,

where dW (F ) (t)W ($) (t) = ρdt, see [59]. According to [75], [76] for the Heston
model we can represent the price of a call option as follows.

Proposition 5.5. The normalized price of a call written on an underlying driven
by a square-root stochastic volatility process has the form

(5.11) C (τ , k) = 1− 1

2π

∫ ∞
−∞

E (τ , u)

Q (u)
e−k(iu−

1
2 )du,

where

E (τ , u) = eA(τ,u)−B(τ,u)$0Q(u) ≡ eC(τ,u),(5.12)

A (τ , u) = −κθ
ε2

(
F+ (u) τ + 2 ln

(
F− (u) + F+ (u) exp (−Z (u) τ)

2Z (u)

))
,

B (τ , u) =
1− exp (−Z (u) τ)

F− (u) + F+ (u) exp (−Z (u) τ)
,

C (τ , u) = A (τ , u)− B (τ , u)$0Q (u) ,

and

F± (u) = ±
(
ρε

(
iu+

1

2

)
− κ
)

+ Z (u) ,(5.13)

Z (u) =

√(
ρε

(
iu+

1

2

)
− κ
)2

+ ε2Q (u),

or, equivalently,

F± (u) = ± (ρεiu− κ̂) + Z (u) ,

Z (u) =

√
(ρεiu− κ̂)

2
+ ε2Q (u),

where κ̂ = κ− ρε/2.

Remark 5.5. The martingale condition, which is easy to verify, reads

A
(
τ ,− i

2

)
= 0.

Remark 5.6. We note in passing that C (τ , u) can be represented in the form

C (τ , u) = θC1 (τ , u) +$0C2 (τ , u) ,

which emphasizes the contributions of average and instantaneous variance, respec-
tively.

It is clear that C (τ , u) in Proposition 5.5 is not a linear function of τ , so that
the Heston process is not a Lévy process. However, in the limits of τ → ∞ and
τ → 0 it can be viewed as such.
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Proposition 5.6. For τ →∞ we can represent C (τ , u) as follows

(5.14) C (τ , u) = −κθF+ (u) τ

ε2
− 2κθ

ε2
ln

(
1− F+ (u)

2Z (u)

)
− $0

ε2
F+ (u) +O

(
1

τ

)
.

For τ → 0 we have

C
(
τ ,
v

τ

)
= −

i$0v sinh
(
ρ̄εv
2

)
τε sinh

(
ρ̄εv
2 + iφ

) − κθ

ε2

(
iρεv + 2 ln

(
−
i sinh

(
ρ̄εv
2 + iφ

)
ρ̄

))
(5.15)

+
iκ̂$0v

(
−ρρ̄εv2 + sinh

(
ρ̄εv
2

)
cosh

(
ρ̄εv
2 + iφ

))
ρ̄ε2 sinh2

(
ρ̄εv
2 + iφ

)2 +O (τ) ,

where ρ̄ =
√

1− ρ2, and φ = arctan (ρ̄/ρ).

Proof. Straightforward but tedious calculation leads to (5.14). To derive (5.15), we
use for inspiration the well-known duality between the Brownian motions W (τ)
and τW (1/τ), introduce a new variable v = τu and then the formula follows. �

It is easy to see from formula (5.14) that a Heston process with zero correlation
is asymptotically equivalent to an NIGP. Naturally, in the long-time limit, to the
leading order C does not depend on $0. Thus, to the leading order a Heston process
can be viewed as a Levy process but with time inverted. Also notice that in the
short-time limit C does not depend on θ to the leading order.

A useful survey of modern approaches to option pricing in the Heston framework
is given in [121].

5.5. Calibration to Market Data. For later tests we shall need concrete parametriza-
tions of the various processes introduced in this paper. For this purpose, let us
attempt to calibrate to the set of market data given in Table 1. Since we are only
interested in the case when parameters are constant in time, it is not possible to
calibrate any of the processes of interest to the entire set of market quotes. Instead,
we shall choose a representative maturity, τ = 2y, say, and calibrate parameters
to the set of five option volatilities. This will allow us to identify proper order of
magnitude for these parameters. We consider six representative ELPs and present
the corresponding calibrated parameters in Table 3.

TSP1 α = 0.66 σ = 0.07% c+ = 0.1305 c− = 0.0615 κ+ = 6.5022 κ− = 3.0888
TSP2 α = 1.50 σ = 0.01% c+ = 0.0069 c− = 0.0063 κ+ = 1.9320 κ− = 0.4087
MP λ = 35.33% µ = −0.0318 η = 0.2023

HSVP κ = 2.2707 θ = 0.0225 ε = 0.6200 ρ = −0.0541 $0 = 0.01374
NIGP σ = 14.90% χ̄ = 3.20
QVP a = 1.322 p = 0.967 q = 0.301

Table 3. Parameters for six representative processes calibrated
to market quotes at τ = 2y.

The quality of the calibration for two TSPs, MPs and HSVPs, which is fairly
high, is shown in Figure 3(a). Although for NIGPs and QVPs do not have enough
parameters to ensure successful calibration to the market, our choice of parameters
generates satisfactory (but not perfect) fits shown in Figure 3(b).
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Figure 3. σ (∆) calibrated to five market quotes (see Table 1) for
four representative processes. The corresponding maturity is 2y.
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6. Asymptotics of the Option Price in the Black-Scholes-Merton
Framework

In Sections 7, 8, 9 we shall use the LL formula of Section 5 to establish a variety
of asymptotic expressions for option prices and implied volatilities. Before this,
however, we take a brief detour into the analysis of the limiting behavior of BS
prices when variances v and strikes k are either large or small. This analysis is
required later in order to convert option price asymptotics into implied volatility
asymptotics.

As was mentioned earlier, the undiscounted price of a call option can be written
in the form CBS (v, k), where v is the annualized variance, and k is the log strike.
The well-known relations

(6.1) Φ (x) = 1− Φ (−x) , Φ (x) ∼
x→−∞

−φ (x)

x

(
1− 1

x2

)
,

allow us to simplify the above formula in various asymptotic regimes. Specifically,

we are interested in the following three cases: A) v → ∞, k = k̂v, k̂ is fixed
(long-time asymptotics); (B) v → 0, k is fixed (short-time asymptotics); (C) v =
v̂ |k|, |k| → ∞, 0 ≤ v̂ ≤ 2 (wing asymptotics). Specifically we have the following
proposition:

Proposition 6.1. In case (A) we have
(6.2)

CBS
(
v, k̂v

)
=



(
1− ek̂v

)
1{k̂<− 1

2} + 1{− 1
2<k̂<

1
2}

+
φ((k̂− 1

2 )
√
v)

R(k̂)
√
v

(
1− 1

v
1

R(k̂)

(
3 + 1

R(k̂)

))
+ ...,

k̂ 6= ± 1
2 ,

1
21{k̂= 1

2} +
(
1− 1

2e
−v/2)1{k̂=− 1

2}
− e(

k̂−1/2)v/2
√
v

(
1− 1

v

)
+ ...,

k̂ = ± 1
2 ,

where

(6.3) R
(
k̂
)

= −Q
(
ik̂
)

= k̂2 − 1

4
.

In case (B) we have

(6.4) CBS (v, k) =
(
1− ek

)+
+ φ

(
k√
v

)
e
k
2 v3/2

k2

(
1− 1

8
v

)
+ ....

Finally, in case (C) we have
(6.5)

CBS (v̂ |k| , k) =
(
1− ek

)+
+
φ
((

1/
√
v̂ −
√
v̂/2
)√
|k|
)

R (1/v̂)
√
v̂ |k|

(
1− 3/v̂2 + 4

(R (1/v̂))
2
v̂ |k|

)
+....

Proof. Simple but slightly tedious application of (6.1) to BS formula (1.6), see, e.g.,
[117], [47], [52]. �

Remark 6.1. For case (A), it is clear that cases k̂ = ±1/2 require separate treat-

ment, with k̂ = 1/2 being particularly important since in order to get ∆ ∼ 1/2, we

have to have k̂ − 1/2 ∼ 1/
√
v, in which case

∆ ∼ Φ

((
k̂ − 1

2

)√
v

)
∼ 1

2
.
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Remark 6.2. For future reference, we wish to generalize formulas (6.2) and (6.4)

and analyze the asymptotics of CBS
(
g (v) v, k̂v

)
, with g (v) =

(
1 + α1/v + α2/v

2
)
,

k̂ is fixed and v → ∞, and CBS (f (v) v, k) with f (v) =
(
1 + α1v + α2v

2
)
, k 6= 0 is

fixed and v → 0. Straightforward computation yields

CBS
(
g (v) v, k̂v

)
= 1{k̂<− 1

2}
(

1− ek̂v
)

+ 1{− 1
2<k̂<

1
2} + e

1
2α1R(k̂)

φ
((
−k̂ + 1

2

)√
v
)

R
(
k̂
)√

v

(6.6)

×

1− 1

v

 1

R
(
k̂
) − α1

2

3 +
1

R
(
k̂
)
+

α2
1

8
+
R
(
k̂
)

2

(
α2

1 − α2

) ,

and

CBS (f (v) v, k) =
(
1− ek

)+
+ φ

(
k√
v

)
e
k
2 +

α1k
2

2 v3/2

k2
(6.7)

×
(

1− 1

8

(
1− 12α1 + 4

(
α2

1 − α2

)
k2
)
v

)
+ ....

These formulas are used below for studying the asymptotic behavior of the implied
volatility in the long-time and short-time limits, respectively. A more complicated
expression, which is equivalent to (6.6) is given by [47].

7. Long-time Asymptotics

7.1. General Remarks. For the purpose of establishing long-time implied volatil-
ity asymptotics via the LL formula, let us briefly introduce the so-called saddlepoint
method.

Saddlepoint approximation is a method for computing integrals of the form

(7.1) g (τ) =
1

2π

∫
C

f (z) eτS(z)dz

when τ → +∞. Here C is a contour in the complex plane, and the amplitude and
phase functions f (z) , S (z) are analytic is a domain D containing C. The extremal
points of S, i.e. zeroes of S′, are called the saddlepoints of S. Under reasonable
conditions, the contribution to g (τ) from a vicinity of a saddlepoint z0, where
S′′ (z0) 6= 0, is given by

(7.2) gz0,0 (τ) =
1√

−2πτS′′ (z0)
eτS(z0)f (z0)

(
1 +O

(
τ−1

))
,

see, e.g., [43], [80], [63], It is clear that the main contribution to the integral comes
from the saddlepoints where Re [S] attains its absolute maximum. The second-order
approximation has the form
(7.3)

gz0,1 (τ) = gz0,0 (τ)

1− 1

2τ


(
f ′(z0)
S′′(z0)

)′
f (z0)

+
5
(
S
′′′

(z0)
)2

12 (S′′ (z0))
3 −

S
′′′′

(z0)

4 (S′′ (z0))
2

+O
(
τ−2

) .
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Saddlepoint approximation has been successfully used by many authors for a
variety of financial applications, see, e.g., [104], [71], [28], [86], among others.

7.2. BS Asymptotics via the Saddlepoint Approximation. To motivate sub-
sequent developments, let us briefly derive some large v asymptotic results for the

BS case. We are specifically interested in the case when v →∞, k = k̂v, k̂ is fixed.
We have

CBS
(
v, k̂v

)
= 1− 1

2π

∫ ∞
−∞

e−v(
1
2Q(u)+k̂(iu− 1

2 ))

Q (u)
du = 1− 1

2π

∫ ∞
−∞

evS(u,k̂)f (u) du,

where

S
(
u, k̂
)

= −1

2
Q (u)− k̂

(
iu− 1

2

)
, f (u) =

1

Q (u)
.

The integrand is meromorphic in the entire complex plain where it has two simple
poles located at the points

u± = ± i
2
, S

(
i

2
, k̂

)
= k̂, S

(
− i

2
, k̂

)
= 0.

We calculate the location of the saddlepoint u∗ by solving the equation

S′
(
u, k̂
)

= −u− ik̂ = 0,

so that

u∗ = −ik̂, S′′ (u∗) = −1, S (u∗) = −1

2

(
k̂ − 1

2

)2

, f (u∗) = − 1

R
(
k̂
) .

and R(k̂) is given by (6.3). In order to apply the saddlepoint approximation, we
need to transform the contour of integration in such a way that it passes through
the saddlepoint, so that its immediate vicinity dominates the entire integral. We
can achieve this goal by parallel shift of the contour of integration from the real
axis to the contour given by

Im (u) = −k̂.

In the process of doing so, three possibilities might occur: (A) the lower pole u−
is crossed (OTM case); (B) no poles are crossed (near-ATM case); (C) the upper
pole u− is crossed (ITM case). When poles are crossed, their contributions have to
be computed via the Cauchy formula:

Π+ = ek̂v, Π− = 1.

The contribution of the saddlepoint has the form (7.3). Summing up all these
contributions, we obtain formula (6.2) of Section 6, where it is derived by elementary
means.

7.3. Exponential Lévy Processes. We can now consider more general LPs.
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7.3.1. Generic Exponential Lévy Processes. For a generic ELP the LL formula
yields

C (τ , k) = 1− 1

2π

∫ ∞
−∞

eτS(u)f (u, k) du,

where

S (u) = υ0 (u)− 1

2
σ2Q (u) , f (u, k) =

e−k(iu−
1
2 )

Q (u)
,

where υ0 (u) is given by (5.3). Thus, for large τ the integral of interest has the form
(7.1), and can be analyzed via formulas (7.2) or (7.3). However, it is more natural
to assume that k ∼ k̄τ , so that the strike moves deeper in or out of the money
when maturity increases (this case is necessary to consider in order to study the
asymptotic behavior of volatility as a function of delta). Under this assumption we
have

C (τ , k) = 1− 1

2π

∫ ∞
−∞

eτS(u,k̄)f (u) du,

where

S
(
u, k̄
)

= υ0 (u)− 1

2
σ2Q (u)− k̄

(
iu− 1

2

)
, f (u) =

1

Q (u)
.

Consider now the general case of ELPs. Since we are dealing with shifted charac-
teristic functions, we can use symmetry and prove that the saddlepoint of interest is
located on the imaginary axis. Accordingly, on the interval of analyticity of S (u),
given by the inequalities Y− < Im (u) < Y+, we can define a real-valued function
Ξ01

(
y, k̄
)

of real arguments y, k̄ (since on the imaginary axis the value of S
(
u, k̄
)

is real, see, e.g., [71], [81]) as follows

Ξ01

(
y, k̄
)

= Ξ0 (y) + k̄

(
y +

1

2

)
,

where

(7.4) Ξ0 (y) = υ0 (iy) +
1

2
σ2R (y) ,

and R (y) is given by (6.3). It is clear that we can find the location of the saddlepoint
by solving the following equation

(7.5) Ξ′0 (y) + k̄ = 0.

Since, in general, this equation cannot be solved analytically, we prefer a parametric
approach, by expressing k̄ in terms of y, rather than the other way around. This
approach leads to the following proposition.

Proposition 7.1. Consider y ∈ (−Y+,Y−) and define Ξ0 (y) , Ξ1 (y) and Ξ01,± (y)
as follows

Ξ0 (y) = υ0 (iy) +
1

2
σ2R (y) , Ξ1 (y) = Ξ′0 (y) ,(7.6)

Ξ01,± (y) = Ξ0 (y)− Ξ1 (y)

(
y ± 1

2

)
.

Then for k̄ = −Ξ1 (y) the corresponding σimp
(
τ , τ k̄

)
can be written in the form

(7.7) σimp
(
τ , τ k̄

)
=

(
a0 (y) +

a1 (y)

τ
+
a2 (y)

τ2
+ ...

)1/2

,
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so that σimp
(
τ , τ k̄

)
can be represented as follows

(7.8) σimp
(
τ , τ k̄

)
= b0 (y) +

b1 (y)

τ
+
b2 (y)

τ2
+ ....

where

a0 (y) =

(
sign

(
y +

1

2

)√
−2Ξ01,+ (y)− sign

(
y − 1

2

)√
−2Ξ01,− (y)

)2

,(7.9)

b0 (y) = a
1/2
0 (y) ,(7.10)

and higher order coefficients ai (y) and bi (y) have the form (D.6), (D.7).

Proof. See Appendix D.1. �

Fundamentally, Proposition 7.1 is derived by comparing the asymptotic expan-
sion obtained via the saddlepoint method with the asymptotic expansion for BS
price given by (6.6), and balancing terms. Below we use the following notation

(7.11) σimp,i (y) =

i∑
j=0

bj (y)

τ j
,

for partial sums of an asymptotic series (7.8), and similarly in other instances.

Remark 7.1. While in our approach Proposition 7.1 follows from asymptotic for-
mulas for complex integrals, it can be obtained via the large deviation principle as
well, see, e.g., [118], [119], [37].

7.3.2. Specific Exponential Lévy Processes. For specific ELPs, such as TSPs, NIGPs,
MPs, etc., the corresponding formulas can be made explicit.

Proposition 7.2. For TSPs, NIGPs, and MPs Proposition 7.1 holds provided that
the corresponding Ξ0 (y) are defined as follows:

ΞTS0 (y) =
1

2
σ2R (y) +

∑
s=±

as

(
κs + s

(
y − 1

2

))α
− γ

(
y − 1

2

)
+ δ,(7.12)

ΞNIG0 (y) = σ2κ̄
(
κ̄ −

√
ω̄2 − y2

)
,

ΞM0 (y) =
1

2
σ2R (y) + λ

(
e−q(y−

1
2 )+ η2

2 R(y) − 1− (1− eq)
(
y − 1

2

))
.

For TSPs, y ∈
(
−κ+ + 1

2 , κ− + 1
2

)
; for NIGPs, y ∈ (−ω̄, ω̄); for MPs, y ∈ (−∞,∞).

Proof. Proof is straightforward. For further details, see Appendices D.2, D.3, D.4,
respectively. �

The quality of the saddlepoint approximation in the limit of infinite maturity
for representative TSP, NIGP, and MP is illustrated in Figures 4, 5, 6, and 7,
respectively. The relevant parameters are calibrated to the market. It is clear that
for the calibrated TSP with α = 2/3, NIGP, and MP saddlepoint approximation is
very good, while for the calibrated TSP with α = 3/2 it fails.
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Figure 4. Comparison of the exact and asymptotic expressions
for σimp for the calibrated TSP for different maturities, α = 2/3.
Here and in Figures 5, 6, and 7, ”exact” denotes the implied volatil-
ity calculated by virtue of the LL formula, while σ 0, σ 1, σ 2 are
given by (7.11).
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Figure 5. Comparison of the exact and asymptotic expressions
for σimp for the calibrated TSP for different maturities, α = 3/2.
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Figure 6. Comparison of the exact and asymptotic expressions
for σimp for the calibrated NIGP for different maturities.
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Figure 7. Comparison of the exact and asymptotic expressions
for σimp for the calibrated MP for different maturities.
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Remark 7.2. For some special cases the above formulae can be made more specific.
For the general maximally skewed TSP we can solve (7.5) explicitly and avoid using
the parametric representation. Specifically, we have

Ξ0 (y) = a

((
κ−

(
y − 1

2

))α
− ζ

(
y − 1

2

)
+ η

)
,

Ξ1 (y) = a

(
−α

(
κ−

(
y − 1

2

))α−1

− ζ

)
= −k̄,

where ζ, η are given by (4.5), so that

y∗
(
k̄
)

= κ+
1

2
−
(

1

α

(
k̄

a
− ζ
)) 1

α−1

,

Ξ01,±
(
k̄
)

= a

(
(1− α)

(
1

α

(
k̄

a
− ζ
)) α

α−1

+ κ

(
k̄

a
− ζ
)

+ η

)
+

1

2

(
k̄ ± k̄

)
,

k̄± = a

(
α

(
κ+

1

2
∓ 1

2

)α−1

+ ζ

)
,

σ
(α,κ)
imp,∞

(
k̄
)

= sign
(
k̄− − k̄

)√
−2Ξ01,+

(
k̄
)
− sign

(
k̄+ − k̄

)√
−2Ξ01,−

(
k̄
)
.

These formulas show that for TLGP the ATM implied volatility approaches from
below the following level

σ
(1/2,κ)
imp,∞ (0) = 23/4ϑ1/4

(√
κ+ 1−

√
κ
)3/2

.

We compare asymptotic and exact implied volatilities for TLGP in Figures 8
(a), (b) below. These Figures show that, similarly to the general case of TSPs with
0 < α < 1, for TLGPs the saddlepoint approximation is acceptable.



38 LEIF ANDERSEN AND ALEXANDER LIPTON

10%

15%

20%

25%

30%

Im
p

li
e

d
 V

o
l

0%

5%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Delta

exact σ_0 σ_1 σ_2

(a) T=5y

10%

15%

20%

25%

30%

Im
p

li
e

d
 V

o
l

0%

5%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Delta

exact σ_0 σ_1 σ_2

(b) T=15y

Figure 8. Comparison of the exact and asymptotic expressions
for σimp for the GLP with ϑ = 0.0075, κ = 1.0 for different ma-
turities. Here σimp,exact denotes the exact volatility calculated by
virtue of (4.14), while σimp,i are given by (7.11).
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Remark 7.3. For NIGP we can easily invert the equation Ξ′0 (y) + k̄ = 0, and
avoid using a parametric representation. We have

y0

(
k̄
)

= − ω̄k̄√
σ4κ̄2 + k̄2

, Ξ01,±
(
k̄
)

= σ2κ̄2 − ω̄
√
σ4κ̄2 + k̄2 ± 1

2
k̄, k̄± = ∓σ

2

2
,

σNIGimp,∞
(
k̄
)

= sign
(
k̄− − k̄

)√
−2Ξ01,+

(
k̄
)
− sign

(
k̄+ − k̄

)√
−2Ξ01,−

(
k̄
)
.

Remark 7.4. By using (4.18) which provides the call price for a NIGP explicitly,
we can calculate long-time asymptotics for call prices directly, see Appendix D.3 for
details. The asymptotics obtained via two complementary methods naturally agree.

7.4. Heston Stochastic Volatility Processes. Equation (5.12) shows that for
the Heston model the LL exponent is not proportional to time. However, it is
proportional to time to the leading order when τ → ∞. Formal expansion in
powers of exp (−τZ (u)) yields

E (τ , u, k)

Q (u)
=
eA(τ,u)−B(τ,u)$0Q(u)−τk̄(iu− 1

2 )

Q (u)
∼ eτS(u,k)f (u) ,

where

S
(
u, k̄
)

= −κθ
ε2
F+ (u)− k̄

(
iu− 1

2

)
,(7.13)

f (u) =
e−$0F+(u)/ε2

Q (u)
(
F−(u)
2Z(u)

)2κθ/ε2
,

and F+ (u) ,Z (u) are given by (5.13). As before, we can use saddlepoint method to
obtain the asymptotic of the LL integral. It is easy to check that the corresponding
saddlepoint has to be purely imaginary, so that we can proceed as before.

Proposition 7.3. Consider y ∈ (−Y+,Y−), where

(7.14) Y± =

(
∓ρκ̌+

√
κ̌2 + 1

4 ρ̄
2
)

ρ̄2
,

and κ̌ = κ̂/ε, and define

Ξ0 (y) =
κθ

ε
(ρy + κ̌− ς (y)) ,(7.15)

Ξ1 (y) =
κθ

ε

(
ρ− −ρ̄

2y + ρκ̌

ς (y)

)
,

Ξ01,± (y) = Ξ0 (y)− Ξ1 (y)

(
y ± 1

2

)
,

where

(7.16) ς (y) =
√
−ρ̄2y2 + 2ρκ̌y + κ̌2 + 1/4.

Then for k̄ = −Ξ1 (y) the corresponding σimp
(
τ , τ k̄

)
can be written in the form

σimp
(
τ , τ k̄

)
=

(
a0 (y) +

a1 (y)

τ
+ ...

)1/2

= b0 (y) +
b1 (y)

τ
+ ...,

where the leading order coefficients a0 (y) and b0 (y) have the form (7.9), (7.10),
and higher order coefficients a1 (y) and b1 (y) have the form (D.6), (D.7).



40 LEIF ANDERSEN AND ALEXANDER LIPTON

Proof. The proof is similar to the one of Proposition 7.1 and is omitted for brevity.
�

As expected, the leading-order term in the volatility expansion does not depend
on $0. The quality of the above approximation is illustrated in Figures 9 (a), (b).
These Figures show that for HSVPs the saddlepoint approximation works well.
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Figure 9. Comparison of the exact and asymptotic expressions
for σimp for the calibrated HSVP for different maturities. Here
”exact” denotes the implied volatility calculated by virtue of the
LL formula, while σ 0, σ 1 (7.11).
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Remark 7.5. For HSVPs we can easily invert the equation Ξ′0 (y) + k̄ = 0, and
avoid using the parametric representation. A simple calculation performed in Ap-
pendix D.5 yields

σimp,0
(
k̄
)

= sign

(
y∗
(
k̄
)

+
1

2

)√
−2Ξ01,+

(
k̄
)
− sign

(
y∗
(
k̄
)
− 1

2

)√
−2Ξ01,−

(
k̄
)
,

(7.17)

y∗
(
k̄
)

=
ρκ̌− sign (l)

√
κ̌2 − ρ̄2

(
κ̌2 − 1

4 l
2
)
/ (ρ̄2 + l2)

ρ̄2
,

Ξ01,±
(
k̄
)

=
κθ

εl

((
ρ̄2 + ρl

)
y∗
(
k̄
)

+ (l − ρ) κ̌
)
± 1

2
k̄,

where l = ρ+ εk̄/κθ.

Additional information is given in [51], [62].

8. Short-time Asymptotics

8.1. General Remarks. From the results in Proposition 5.1, and Corollary 5.2,
we see that in order to analyze the asymptotic behavior of the ATM option price
(k = 0) and its derivatives for τ → 0, we need to study the following integrals

l (τ) =
1

2π

∫ ∞
−∞

(1− E (τ , u))

Q (u)
du =

1

π
Re

{∫ ∞
0

(1− E (τ , u))

Q (u)
du

}
,(8.1)

m (τ) =
1

2π

∫ ∞
−∞

E (τ , u)

Q (u)
iudu = − 1

π
Im

{∫ ∞
0

E (τ , u)

Q (u)
udu

}
,

n (τ) =
1

2π

∫ ∞
−∞

E (τ , u) du =
1

π
Re

{∫ ∞
0

E (τ , u) du

}
,

where

E (τ , u) = exp

(
τυ0 (u)− σ2τ

2
Q (u)

)
.

The relation between C (τ , 0) ,Ck (τ , 0) ,Ckk (τ , 0) and l (τ) ,m (τ) , n (τ) is straight-
forward.

Proposition 8.1. C (τ , 0) ,Ck (τ , 0) ,Ckk (τ , 0) can be expressed in terms of l (τ) ,m (τ) , n (τ)
as follows

C (τ , 0) = l (τ) ,(8.2)

Ck (τ , 0) = m (τ) +
1

2
(l (τ)− 1) ,

Ckk (τ , 0) = n (τ) + m (τ) +
1

2
(l (τ)− 1) .

Proof. Straightforward computation. �

We assume that the implied volatility can be expanded in powers of k:

(8.3) σimp (τ , k) =
∑
n≥0

χn (τ)
kn

n!
,

and demonstrate how to express χ0, χ1, χ2 in terms of l,m, n.
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Proposition 8.2. In the LL framework we get

χ0 (τ) ∼ l̂ (τ)

(
1 +

l̂2 (τ)

24

)
τ−1/2,

χ1 (τ) ∼ m̂ (τ)

(
1 +

l̂2 (τ)

8

)
τ−1/2,

χ2 (τ) ∼

(
− 1

l̂ (τ)
+

l̂ (τ)

24
+

1

4
l̂ (τ) m̂2 (τ) + n̂ (τ)

(
1 +

l̂2 (τ)

8

))
τ−1/2,

where

(8.4) l̂ (τ) =
√

2πl (τ) , m̂ (τ) =
√

2πm (τ) , n̂ (τ) =
√

2πn (τ) .

Proof. See Appendix C. �

8.2. Exponential Lévy Processes.

8.2.1. Non-ATM Options on Tempered Stable Processes, Simple Heuristics. Using
the LL formula, it is straightforward to develop small-time asymptotics for non-
ATM options on TSPs. The argument goes as follows (see, e.g., [70] among others).

Proposition 8.3. Assume that σ = 0 and consider

C (τ , k) = 1− 1

2π

∫ ∞
−∞

eτυ0(u)−k(iu− 1
2 )

Q (u)
du, k 6= 0,

where υ0 (u) is given by (5.3). If α ∈ (0, 1), then

∂

∂τ
C (0, k) ∼ − 1

2π

∫ ∞
−∞

e−k(iu−
1
2 )

Q (u)
υ0 (u) du,

where the integral clearly converges. If α ∈ (1, 2), then integration by parts (which
is possible because k 6= 0) shows that:

∂

∂τ
C (τ , k) ∼ − 1

2πik

∫ ∞
−∞

e−k(iu−
1
2 )
(
υ0 (u)

Q (u)

)′
du,

where the integral clearly converges. Accordingly, in both cases, the time value of
the call option δC (τ , k) is linear in time,

δC (τ , k) = c (k) τ + o (τ) .

Proof. See Appendix E.1. �

Broadly speaking, this result means the time decay of the time value δC (τ , k)
is much slower that in the BS case, which is of order exp

(
−k2/2σ2τ

)
, see (1.6),

(6.1). To compensate for that, the corresponding non-ATM implied volatility must

explode with order O(1/
√
τ ln(1/τ)), as was already mentioned in Section 1.
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8.2.2. ATM Options on Tempered Stable Processes, Simple Heuristics . For ATM
options we start with a simple heuristic argument. Consider a TSP with σ = 0 and
α ∈ (0, 1) and calculate the corresponding ATM asymptotics. From (3.10), we have

Cτ (τ , x) = γCx (τ , x) +
∑
s=±

cs

∫ ∞
0

(C (τ , x+ sy)− C (τ , x)) e−κsy

y1+α
dy,

C (0, x) = (ex − 1)
+
.

As we already know, the martingale condition yields

γ = −
∑
s=±

cs

∫ ∞
0

(esy − 1) e−κsy

y1+α
dy = −p+ + p−,

where

ps = scs

∫ ∞
0

(esy − 1) e−κsy

y1+α
dy > 0, s = ±.

In order to calculate C (τ , 0) we discretize x on a grid xn = nh, −N ≤ x ≤ N ,
Cn (τ) = C (τ , xn), and use an explicit finite-difference scheme. Since we have an
advection term, we have to differentiate two cases: (A) γ > 0 (p− > p+), and (B)
γ < 0 (p− < p+). In case (A) our finite-difference scheme yields

C0 (τ)

τ
= γ

(C1 (0)− C0 (0))

h
+ p+ = γ

(
eh − 1

)
h

+ p+ ≈ γ + p+ = p−.

In case (B) our scheme yields

C0 (τ)

τ
= γ

(C0 (0)− C−1 (0))

h
+ p+ = p+.

Note, in both cases differentiation is performed upstream to ensure stability of the
scheme. We can combine the above formulae into one as follows

(8.5) C (τ , 0) = τ max (p+, p−) .

We note that this formula coincides with (1.10) in Section 1. For finite variation
TSPs, the ATM volatility therefore goes to zero (to ensure that C (τ , 0) decays
linearly), in marked contrast with non-ATM volatilities, which, as was noted in
Section 8.2.1, explode for τ → 0. We emphasize that the technique above does not
hold for α ≥ 1, as the p± integrals diverge. We also note that the result gives us
no information about the slope and convexity of the ATM implied volatility. To
address these issues, we now process with a more detailed analysis.

8.2.3. Main Result for Tempered Stable Processes. In view of the LL formula, in
order to be able to evaluate the short-time asymptotic behavior of σimp (τ , 0) and
its k-derivatives ∂kσimp (τ , k)|k=0, ∂2

kσimp (τ , k)
∣∣
k=0

, we need to evaluate the short-

time limit of the three integrals in (8.1) with the shifted characteristic exponent of
the form

υ0 (u) =
∑
s=±

as

(
κs − s

(
iu+

1

2

))α
+ γ

(
iu+

1

2

)
+ δ.

We have to distinguish four cases (A) α ∈ (0, 1) , σ = 0, (B) α ∈ (1, 2) , σ = 0, (C)
α ∈ (0, 1) , σ > 0, (D) α ∈ (1, 2) , σ > 0. We calculate the corresponding integrals
by scaling the independent variable u as appropriate. Specifically, we use: v = τu
(case (A)); v = τ1/αu (case (B)); v = τ1/2u (cases (C) and (D)). This technique is
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similar to the approach in [35], for example; in case (B), it has also been used by
[116].

When considering the relevant integrals, we note that the dominated convergence
theorem (DCT), which is the principal tool for studying the limiting behavior of
integrals depending on parameters, cannot in all cases be applied to establish the
limits for τ → 0 directly, so great case must be taken to avoid faulty conclusions.
To demonstrate this, let us just consider the simple example of establishing the
limit of

l̃ (τ) =
1

2π

∞∫
−∞

1− eτγ(iu+ 1
2 )

u2 + 1
4

du,

which is similar to l (τ). Formula (5.7) shows that

l̃ (τ) = 1− eτγ
−
∼ −τγ−.

Now, we wish to derive this formula asymptotically. We change variables v = τu,
and represent l̃ (τ) in the form

l̃ (τ) = τ L̃ (τ) ,

where

(8.6) L (τ) =
1

2π

∫ ∞
−∞

1− e
τγ
2 +iγv(

v2 + 1
4τ

2
) dv =

1

π

∫ ∞
0

1− e
τγ
2 cos (γv)

v2 + 1
4τ

2
dv.

We notice that at v = 0 the corresponding integrand is unbounded when τ → 0, so
that we cannot apply the DCT directly. However, we can split the above integral
into two parts as follows

L (τ) = Lε0 (τ) + L∞ε (τ) ,

where

Lv2
v1

(τ) =
1

π

∫ v2

v1

1− e
τγ
2 cos (γv)

v2 + 1
4τ

2
dv.

In order to evaluate Lε0 (τ) we expand the integrand around v = 0 and get, to the
leading order in ε,

Lε0 (τ) ∼ −τγ
2π

∫ ε

0

1

v2 + 1
4τ

2
dv = − γ

2π

∫ ε/τ

0

1

Q (u)
du ∼ −γ

2
.

In order to evaluate L∞ε (τ) we apply the DCT, which says that

L∞ε (τ) →
τ→0

L∞ε (0) ,

since the corresponding integrands are uniformly bounded, yielding:

L∞ε (τ) ∼ 1

π

∫ ∞
ε

1− cos (γv)

v2
dv →

ε→0

|γ|
2
.

Thus,

L (τ) ∼ −γ + |γ|
2

= −γ−,

which is the correct answer.
Judicious usage of the technique above, leads to the following important result:
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Proposition 8.4. Consider integrals l,m, n defined by formulas (8.1). Their as-
ymptotic behavior depends on α and σ. In cases (A)-(D) the corresponding asymp-
totics has the form

l m n

A C
(A)
L τ C

(A)
M C

(A)
N τ−1

B C
(B)
L τα

′
C

(B)
M C

(B)
N τ−α

′

C στ1/2
√

2π
+ C

(C)
L τ C

(C)
M τ1/2 1√

2πστ1/2
+ C

(C)
N τ (1−α)/2

D στ1/2
√

2π
+ C

(D)
L τ (3−α)/2 C

(D)
M τ (2−α)/2 1√

2πστ1/2
+ C

(D)
N τ (1−α)/2

,

where

CL CM CN

A −
(

(γ)
−

+ δ + %
)

− 1
2 sign (γ) δD (γ)

B 1
πΓ (1− α′) rα′ cos (α′χ) − 1

πα
′χ 1

πΓ (1 + α′) r−α
′
cos (α′χ)

C −
(

1
2γ + δ + %

)
− 1√

2π
γσ−1/2 1

π2(α−1)/2Γ
(
α+1

2

)
pσ−(α+1)

D − 1
π2(α−3)/2Γ

(
α−1

2

)
pσ−(α−1) − 1

π2(α−2)/2Γ
(
α
2

)
qσ−α 1

π2(α−1)/2Γ
(
α+1

2

)
pσ−(α+1)

.

Here α′ = 1/α, a±, γ, δ, % are given by (4.5), δD (.) is the Dirac delta function, and

p = (a+ + a−) cos
(πα

2

)
< 0, q = − (a+ − a−) sin

(πα
2

)
, r =

√
p2 + q2, χ = arctan

(
−q
p

)
.

Proof. See Appendix E.1. �

Remark 8.1. For m(C) a more accurate asymptotic expression can be derived:

m(C) ∼
(
C

(C)
M τ1/2 +D

(C)
M τ (2−α)/2

)
,

where

D
(C)
M = − 1

π
2α/2−1Γ

(α
2

)
qσ−α.

Given Proposition 8.4, we can use Proposition 8.2 to convert the price limits into
the volatility limits. The results are given in Proposition 8.5 below.

Proposition 8.5. In cases (A)-(D) we have the following expressions for χi in
equation (8.3):
(8.7)

χ0 − σ χ1 χ2

A
√

2πC
(A)
L τ1/2

√
2πC

(A)
M τ−1/2 N/A

B
√

2πC
(B)
L τα

′−1/2
√

2πC
(B)
M τ−1/2

(
− 1√

2πC
(B)
L

+
√

2πC
(B)
N

)
τ−α

′−1/2

C
√

2πC
(C)
L τ1/2

√
2πC

(C)
M

√
2πC

(C)
L

σ2 τ−1/2

D
√

2πC
(D)
L τ (2−α)/2

√
2πC

(D)
M τ (1−α)/2

√
2π

(
C

(D)
L

σ2 + C
(D)
N

)
τ−α/2

.

Proof. Follows from Propositions 8.2, 8.4. �
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Remark 8.2. For χ
(C)
1 , χ

(C)
2 more accurate asymptotic expressions can be derived:

χ
(C)
1 ∼

√
2π
(
C

(C)
M +D

(C)
M τ (1−α)/2

)
,

χ
(C)
2 ∼

√
2π

(
C

(C)
L

σ2
+ C

(C)
N τ (2−α)/2

)
τ−1/2.

Motivated by our discussion in Section 2, it is of interest to express these limits
in terms of RRs and BFs.

Proposition 8.6. In cases (A) - (D) we have the following expressions for RRs
and BFs:

RR BF

A −
√

2π3C
(A)
L C

(A)
M τ1/2 N/A

B −
√

2π3C
(B)
L C

(B)
M τα

′−1/2
√

2π3

16 C
(B)
L

(
−1 + 2πC

(B)
L C

(B)
N + 4π

(
C

(B)
M

)2
)
τα
′−1/2

C −πC(C)
M τ1/2

√
2π3

16 C
(C)
L τ1/2

D −πC(D)
M τ (2−α)/2

√
2π3

16

(
C

(D)
L + σ2C

(D)
N

)
τ (2−α)/2

.

Proof. Combining equations (2.2) and (2.3) we easily get

(8.8) RR (τ) ∼ −
√
π

2
χ0χ1τ

1/2,

(8.9) BF (τ) ∼ π

32
χ0

(
2χ0χ2 − χ0χ1 + 4χ2

1

)
τ ,

The Proposition now follows directly from Proposition 8.5. �

Remark 8.3. For RR(C), RR(D), BF (B), BF (C) more accurate asymptotic ex-
pressions can be derived:

RR(C) ∼ −
√

2π3

(
1√
2π

+ C
(C)
L τ1/2

)
C

(C)
M τ1/2,

RR(D) ∼ −
√

2π3

(
1√
2π

+ C
(D)
L τ (2−α)/2

)
C

(D)
M τ (2−α)/2,

BF (B) ∼
√

2π3

16
C

(B)
L

(
−1 + 2πC

(B)
L C

(B)
N + 4π

(
C

(B)
M

)2

− πC(B)
L C

(B)
M τα

′
)
τα
′−1/2,

BF (C) ∼
√

2π3

16

(
C

(C)
L + σ2C

(C)
N τ (1−α)/2

)
τ1/2.

Examination of the table in Proposition 8.6 shows that in all cases (with the
exception of the degenerate case (A)), RRs and BFs go to zero for small τ . In other
words, TSPs cannot produce finite limits for RRs and BFs for τ → 0. On the other
hand, the rate of decay is generally slower than for regular diffusions.

8.2.4. Tests. In order to study the quality of the above asymptotic formulas in
detail we start with a representative LGP considered in Proposition 4.3. As in
Section 7.3.2, we choose for illustrative purposes ϑ = 0.0075, κ− = 1.00. Straight-

forward calculation yields C
(A)
L = 0.0507, C

(A)
M = −0.5, C

(A)
N = 0.0. The quality of

the corresponding asymptotic formulas vs. exact analytical expressions calculated
in Proposition 4.3 is shown in Table 4. Here and below C̄ and C stand for the
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values calculated numerically and analytically, respectively, and similarly for other
quantities of interest.

log10 (τ) -2 -4 -6

C̄
(A)
L /C

(A)
L 0.941 0.994 0.999

C̄
(A)
M /C

(A)
M 0.941 0.994 0.999

C̄
(A)
N 0.304 0.030 0.003

Table 4. Analytical vs. numerical values for C
(A)
L , C

(A)
M , C

(A)
N .

Next, we up the ante and consider realistic TSPs. Table 5 lists their parameters
as well as the values of CL, CM, CN as computed by Proposition 8.4. The quality
of the corresponding asymptotic formulas is summarized in Tables 6, 7.

α c+ c− κ+ κ− σ CL CM CN

A 0.66 0.1305 0.0615 6.5022 3.0888 0.00 0.1863 0.5000 0.0000
B 1.50 0.0069 0.0063 1.9320 0.4087 0.00 0.0670 0.0096 3.6492
C 0.66 0.0521 0.0245 6.5022 3.0888 0.10 0.0599 0.1353 -2.2867
D 1.50 0.0028 0.0025 1.9320 0.4087 0.10 0.0192 0.0052 -0.9610

Table 5. Parameters for four representative TSPs and analytical
values for CL, CM, CN. Parameters for processes (A) and (B)
are approximately calibrated to the market vols for 2y options;
parameters for processes (C) and (D) are chosen in such a way
that the market ATM vol for 2y options is recovered. In addition,

D
(C)
M = −0.2395.

log (τ) -2 -4 -6 -8 -10

A C̄
(A)
L /C

(A)
L 0.74 0.94 0.99 1.00 1.00

A C̄
(A)
M /C

(A)
M 0.60 0.92 0.81 0.76 1.28

B C̄
(B)
L /C

(B)
L 0.92 0.98 1.00 1.00 1.00

B C̄
(B)
M /C

(B)
M 0.43 0.86 0.97 0.99 1.00

B C̄
(B)
N /C

(B)
N 1.00 1.00 1.00 1.00 1.00

C C̄
(C)
L /C

(C)
L 0.51 0.76 0.87 0.95 0.98

C C̄
(C)
M /C

(C)
M 0.29 0.63 0.82 0.92 0.96

C D̄
(C)
M /D

(C)
M 0.86 0.96 0.99 1.00 1.00

C C̄
(C)
N /C

(C)
N 0.75 0.94 0.99 1.00 1.00

D C̄
(D)
L /C

(D)
L 0.83 0.94 0.98 0.99 1.00

D C̄
(D)
M /C

(D)
M 0.27 0.72 0.91 0.97 0.99

D C̄
(D)
N /C

(D)
N 0.91 0.97 0.99 1.00 1.00

Table 6. Analytical vs. numerical values for CL, CM, CN, and D
(C)
M .
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To numerically examine the performance of the short-time asymptotic expan-
sions, Table 7 compares the asymptotic results given by (8.7) with the results for
χ0 − σ, χ1, and χ2 obtained by a direct computation of the LL integrals in Equa-
tions (5.1), (5.4), (5.5). Note that high-precision numerical computation of these
integrals is a rather delicate affair; to ensure stable results, we used adaptive Gauss-
Kronrod quadrature combined with both a judicious choice of integration region
and a very high number of integration nodes (often exceeding 105 nodes). Table
7 provides proof for the validity of the results given by (8.7), as the exact and
asymptotic results converge to each other for sufficiently small τ . Unfortunately,
this convergence is rather slow and only truly satisfactory for τ around 10−4 years,
i.e. for time-scales in the order of minutes or seconds. While the asymptotic ex-
pressions do provide the correct limiting behavior, it is therefore questionable how
useful they are for practical work.

log (τ) 0 -2 -4 -6 -8 -10

A log (χ0 − σ) -0.92 -1.46 -2.36 -3.34 -4.33 -5.33
A log (χ̄0 − σ) -0.33 -1.33 -2.33 -3.33 -4.33 -5.33
A log (χ1) -1.34 0.88 2.06 3.01 3.98 5.20
A log (χ̄1) 0.10 1.10 2.10 3.10 4.10 5.10
B log (χ0 − σ) -0.91 -1.14 -1.45 -1.78 -2.11 -2.44
B log (χ̄0 − σ) -0.77 -1.11 -1.44 -1.77 -2.11 -2.44
B log (χ1) -1.87 + πi -0.98 0.32 1.37 2.38 3.38
B log (χ̄1) -1.62 -0.62 0.38 1.38 2.38 3.38
B log (χ2) 0.23 2.78 5.16 7.50 9.84 12.17
B log (χ̄2) 0.51 2.84 5.17 7.51 9.84 12.17
C log (χ0 − σ) -1.57 - 2.11 -2.94 -3.88 -4.85 –5.83
C log (χ̄0 − σ) -0.82 -1.82 -2.82 -3.82 -4.82 -5.82
C log (χ1) -2.75 -1.00 -0.67 -0.55 -0.51 -0.49
C log (χ̄1) -0.47 -0.47 -0.47 -0.47 -0.47 -0.47
C log (χ2) -0.25 1.71 3.00 4.10 5.14 6.16
C log (χ̄2) 1.18 2.18 3.18 4.18 5.18 6.18
D log (χ0 − σ) -1.56 -1.90 -2.34 -2.83 -3.32 -3.82
D log (χ̄0 − σ) -1.32 -1.82 -2.32 -2.82 -3.32 -3.82
D log (χ1) -2.42 + πi -1.95 -1.03 -0.43 0.10 0.61
D log (χ̄1) -1.88 -1.38 -0.88 -0.38 0.12 0.62
D log (χ2) -0.36 1.63 3.30 4.86 6.37 7.88
D log (χ̄2) 0.38 1.88 3.38 4.88 6.38 7.88

Table 7. Analytical and numerical values for log(χ0−σ), log (χ1),
and log (χ2) as functions of log (1/τ).

To further illustrate the convergence of exact and asymptotic results, Figure 10
contains log-log plots of the short-time behavior of χ0−σ, χ1, and χ2, for test case
C (1 < α < 2, σ > 0). It is evident that the straight-line behavior predicted by
(8.7) is not realized for values of τ larger than, at most, a few hours.
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Figure 10. Comparison of the exact and asymptotic short-time
behavior of χ0 (τ)− σ, χ1 (τ), and χ2 (τ), for test case C.
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8.2.5. Options on Normal Inverse Gaussian Processes . By using (4.16), we can
calculate short-time asymptotics for call prices both directly and via the LL formula.

Proposition 8.7. When k 6= 0 the asymptotic behavior of the time value of the
call option δCNIG (v, k) and its derivatives is linear in time

∂pδCNIG (v, k)

∂kp
= cNIGp (k) v + o (v) , k 6= 0,

where v = σ2τ .

Proof. See Appendix E.2. �

When k = 0, we need to analyze the asymptotic behavior of of the integrals
l,m, n given by (8.1) with ENIG (v, u) of the form

(8.10) ENIG (v, u) = exp
(
vκ̄
(
κ̄ −

√
ω̄2 + u2

))
.

Proposition 8.8. Consider l,m, n defined by formulas (8.1) with ENIG (v, u) given
by (8.10) and the ATM call price CNIG (v, 0) and its derivatives with respect to log-
strike k. Their asymptotic behavior is given by

l (v) ∼ CNIG (v, 0) ∼ − κ̄v ln (v)

π
,

m (v) ∼ CNIGk (v, 0) ∼ −1

2
,

n (v) ∼ CNIGkk (v, 0) ∼ 1

πκ̄v
.

Proof. See Appendix E.2. �

As for TSPs, the rate of convergence of the corresponding integrals for NIGPs
is slow.

8.2.6. Options on Merton Processes. As was mentioned earlier, MPs do not belong
to the TS class. Nevertheless, they can be analyzed by the same methods. For
brevity we assume that σ = 0. As before, we need to evaluate the integrals l,m, n
given by (8.1) with EM (v, u) of the form

(8.11) EM (v, u) = exp

(
v

((
eq(iu+1/2)−η2Q(u)/2 − 1

)
+ (1− eq)

(
iu+

1

2

)))
.

Proposition 8.9. Consider l,m, n defined by formulas (8.1) with EM (τ , u) given
by (8.11) and the ATM call price CM (v, 0) and its derivatives with respect to log-
strike k. Their asymptotic behavior is given by

l (v) ∼ CM (v, 0) ∼ v
(

(1− eq)+
+ eqCBS (η,−q)

)
,

m (v) ∼ CMk (v, 0) ∼ −1

2
sign (1− eq) ,

n (v) ∼ CMkk (v, 0) ∼ 1

v
δ (1− eq) .

where v = λτ .

Proof. See Appendix E.3. �
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We can obtain the result of Proposition 8.9 directly from the Merton’s formula.
To see this, let C

(
τ , k̄τ ;σ

)
be the normalized BS price of a call option considered

as a function of time, time-proportional log-strike, and volatility,

C
(
τ , k̄τ ;σ

)
= Φ

((
− k̄
σ

+
σ

2

)√
τ

)
− ek̄τΦ

(
−
(
k̄

σ
+
σ

2

)√
τ

)
.

To the leading order we can represent the normalized price of an ATM call option
on a MP as follows

CM (τ , 0) ∼ C (τ ,−λτ (1− eq) ; 0) + λτeqC

(
τ ,− (λτ (1− eq) + q) ;

η√
τ

)
.

We have

C (τ ,−λτ (1− eq) ; 0) =
(

1− e−λτ(1−eq)
)+

= λτ (1− eq)+
,

λτeqC

(
τ ,− (λτ (1− eq) + q) ;

η√
τ

)
∼ λτeq

(
Φ

(
q

η
+
η

2

)
− e−qΦ

(
q

η
− η

2

))
.

Accordingly,

CM (τ , 0) ∼ λτ
(

(1− eq)+
+ eqCBS (η,−q)

)
.

in agreement with our previous result (recall that, from (8.2) C = l). Expressions
for m and n can be obtained in the same manner.

8.3. Local Volatility Processes. Consider the general local volatility case and
assume that an underlying is governed by the SDE of the form

(8.12) dF (t) = σNloc (F (t)) dW (t) , F (0) = F0,

where σNloc (F ) is the so-called Normal local volatility. The corresponding log-normal
local volatility is given by σNloc (F ) /F , for brevity we denote it as σloc (F ). We
consider options on the underlying driven by Brownian motion with local volatility
described by (8.12). When Ft is driven by a Brownian process with local volatility,
we call the corresponding process a local volatility process (LVP). It is well-known
(and had been established via asymptotic methods by [53] a long time ago) that the
corresponding short term implied volatility σimp (τ , k), is independent of τ to the

leading order while RRs and BFs are proportional to τ1/2and τ , respectively. Thus,
market observed behavior of FX volatilities (see Table 1) cannot be explained in
the local volatility framework. Let us assume that

σloc (k) =
∑
n≥0

ξn
kn

n!
, σimp (τ , k) =

∑
n≥0

χn
kn

n!
,

and express χn, RRs and BFs in terms of ξn and τ .

Proposition 8.10. In the limit of τ → 0 the implied volatility σimp,0 (k) can be
written as

(8.13) σimp,0 (k) =

{ k∫ k
0

dk′
σloc(k′)

= k∫K
F0

dK′
σN
loc(K

′)

, k 6= 0,

σloc (0) , k = 0,
≡ b0 (k) .

Accordingly, the coefficients χ
(0)
n can be expressed in terms of ξn as follows:

(8.14) χ
(0)
0 = ξ0, χ

(0)
1 =

ξ1

2
, χ

(0)
2 =

2ξ0ξ2 − ξ
2
1

6ξ0

,
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while RRs and BFs we have the following expressions:

(8.15) RR (τ) ∼ −
√
π

8
ξ0ξ1τ

1/2,

(8.16) BF (τ) ∼ π

32
ξ0

(
−1

2
ξ0ξ1 +

4

3
ξ0ξ2 +

1

3
ξ2

1

)
τ .

Proof. Formula (8.13) is given in [5], [19], [20], [40]. Rewriting it in the form

(8.17)
k

σimp (k)
=

∫ k

0

dξ

σloc (ξ)
.

and differentiating (8.17) with respect to k three times, we obtain (8.14). Substi-
tuting (8.14) in (8.8), (8.9), we obtain (8.15), (8.16). �

Remark 8.4. More accurate formulas incorporating linear dependence on τ are
also well-known (see,e.g., [5], [57], [75], [58]):

(8.18) σimp,1 (τ , k) = b0 (k) + τb1 (k) ,

where

b1 (k) =

{
b30(k)
2k2 ln

(
σloc(0)σloc(k)

b20(k)

)
, k 6= 0,

σ2
loc(0)b0,kk(0)

4 , k = 0.

QVPs can be used as a convenient test bed for checking the asymptotic formulas
(8.13) and (8.18). For the quadratic volatility model with negative real roots, say,
the terms in (8.18) become especially simple:

b0 (k) =
aqk

S (k)
,

b1 (k) =


a3q3k

2S3(k) ln

(
((1−p)2+q2)

(
(ek−p)

2
+q2

)
S2(k)

ekq2k2

)
, k 6= 0

1
24a

3
(

(1− p)
2

+ q2
)((

(1− p)
2

+ q2
)2

+ 4q2

)
, k = 0.

where

S (k) = arctan

(
p− 1

q

)
− arctan

(
p− ek

q

)
.

The quality of these approximations versus the exact expression obtained Propo-
sition 5.4 is very good, as is shown in Figure 11. However, it is clear that having
substantial risk-reversal and straddles for short maturities is not feasible in this
setting when parameters are of order unity.
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Figure 11. Comparison of the exact and asymptotic expressions
for σimp for the calibrated QVP for different maturities. Here
”exact” denotes the exact volatility calculated by virtue of the
formula (5.10), while σ 0, σ 1 are given by (8.13), (8.18).
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8.4. Heston Stochastic Volatility Processes. We can easily analyze the as-
ymptotic behavior of the implied volatility for the Heston model either by using
the LL formula or by direct computation, see e.g., [71], [73], [74], [75], [77], [91], [49],
[121], [50]. Comparison of the asymptotic and exact formulas can be performed by
computing the relevant integrals numerically, which, by now is a well-understood
procedure, see, e.g., [61], [110]. In view of Proposition 8.2, in order to describe the
asymptotic behavior of the implied volatility in the Heston framework, we need to
evaluate asymptotically the corresponding integrals l,m, n.

Proposition 8.11. The asymptotic behavior of the integrals l̂, m̂, n̂ defined by (8.4)is
described as follows

l̂ (τ) ∼
√
$0τ

(
1 + λ1τ + λ2τ

2 + ...
)
,(8.19)

m̂ (τ) ∼
√
$0τ

ρε

4$0
(1 + µ1τ + ...) ,

n̂ (τ) ∼ 1
√
$0τ

(
1 + ν1τ + ν2τ

2 + ...
)
,

where the corresponding λi, µi, νi are given by (E.1).

Proof. See Appendix E.4. �

Proposition 8.12. For HSVPs, we have the following expressions for χi and
σimp (τ , k):

χ0 (τ) ∼
√
$0

(
1 + χ0,1τ + ...

)
,(8.20)

χ1 (τ) ∼ ρε

4$0

√
$0

(
1 + χ1,1τ + ...

)
,

χ2 (τ) ∼ ε2

12$2
0

√
$0

((
1− 5

2
ρ2

)
+ χ2,1τ + ...

)
.

where the corresponding χi,1 are given by (E.2). Accordingly, σimp (τ , k) can be
written in the form

(8.21) σimp (τ , k) ∼ b̂0 (k) + τ b̂1 (k) + ...,

where

b̂0 (k) =
√
$0

(
1 +

ρεk

4$0
+

(
1− 5

2ρ
2
)
ε2k2

24$2
0

)
=
√
$0

(
1 +

ρl

4
+

(
1− 5

2ρ
2
)
l2

24

)
,

(8.22)

b̂1 (k) =
√
$0

(
χ0,1 +

χ1,1ρεk

4$0
+
χ2,1ε

2k2

24$2
0

)
=
√
$0

(
χ0,1 +

χ1,1ρl

4
+
χ2,1l

2

24

)
,

and l = εk/$0.

Proof. See Appendix E.4. �

By using the well-known duality properties of the Brownian motion for τ → 0
and τ →∞, it is possible to analyze the asymptotic behavior of the call price and
the corresponding implied volatility for fixed k 6= 0, i.e., for options which are not
ATM. It is clear that for τ → 0 any strike k 6= 0 is located ”far away”, so that we
can analyze the corresponding price via asymptotic methods, more specifically via
the saddlepoint approximation.
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Proposition 8.13. Consider y ∈ (−Y+,Y−), where

(8.23) Y± =
π ∓ π ± 2φ

ρ̄ε
,

and φ = arctan (ρ̄/ρ), 0 < φ < π, and define Ξ0 (y) , Ξ1 (y) = Ξ′0 (y) , Ξ01 (y) =
Ξ0 (y)− Ξ1 (y) as follows

Ξ0 (y) =
$0y sin (X−)

ε sin (X+)
,

Ξ1 (y) =
$0

ε

(
sin (X−) sin (X+) + 1

2 ρ̄
2εy
)

sin2 (X+)
,

Ξ01 (y) =
$0

ε

(
(y − 1) sin (X−) sin (X+)− 1

2 ρ̄
2εy
)

sin2 (X+)
,

where X± = (ρ̄εy + φ± φ) /2. Then for k = −Ξ1 (y), k 6= 0, the corresponding
σimp (τ , k) can be written in the form

σimp (τ , k (y)) = (a0 (y) + a1 (y) τ + ...)
1/2

= b0 (y) + b1 (y) τ + ....

Here the leading order terms a0 (y) , b0 (y) are given by

a0 (y) = − k2 (y)

2y
(
$0 sin(X−)
ε sin(X+) + k (y)

) = − $0l
2 (y)

2εy
(

sin(X−)
sin(X+) + l (y)

) ,(8.24)

b0 (y) = a
1/2
0 (y) ,

where l = εk/$0, while the higher order terms a1 (y) , b1 (y) are given by (E.5).

Proof. See Appendix E.4. �

In practice, it is convenient to solve the characteristic equation

Ξ1 (y) + k = 0,

for y, and express σimp (τ , k) in terms of k, or, equivalently, l = εk/$0. Define the
function Z (l; ρ) such that z∗ = Z (l; ρ) solves the equation(

sin
(
X ∗−
)

sin
(
X ∗+
)

+ ρ̄2z∗

2

)
sin2

(
X ∗+
) = −l,

where X ∗± = (ρ̄z∗ + φ± φ) /2. Then y∗ = Z (l; ρ) /ε solves the characteristic equa-
tion. While Z does not have a simple analytical form, it is very easy to calculate it
numerically. The corresponding calculation is particularly efficient since paramet-
rically Z depends only on ρ. We can define the following function

Y (l; ρ) = Z (l; ρ)

(
sin
(
X ∗−
)

sin
(
X ∗+
) + l

)
.

Then, for l 6= 0 and τ → 0 the corresponding implied volatility behaves as follows

σimp (τ , l) =

√
$0 |l|√
−2Y (l; ρ)

(1 +O (τ)) .

While the above expression is not defined for l = 0, it is easy to see that
√
$0 |l|√
−2Y (l; ρ)

→
l→0

√
$0,
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so that
σimp (τ , 0) →

τ→0

√
$0,

as expected. Moreover, it is not difficult to show that

Z (l; ρ) = −l +
3ρl2

4
+O

(
l3
)
,

Y (l; ρ) = − l
2

2

(
1− ρl

2
−
(
1− 19

4 ρ
2
)
l2

12

)
+O

(
l5
)
,

|l|√
−2Y (l; ρ)

= 1 +
ρl

4
+

(
1− 5

2ρ
2
)
l2

24
+O

(
l3
)
,

in complete agreement with formulas (8.22).
The quality of the above approximations is illustrated in Figure 12. As we

can see, accuracy is acceptable but not particularly good. Specifically, for HSVPs
short-time asymptotics work well for very short maturities (τ ∼ 1m), but loose
their accuracy for moderate maturities (τ ∼ 6m).
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Figure 12. Comparison of the exact and asymptotic expressions
for σimp for the calibrated HSVP for different maturities. Here
”exact” denotes the exact volatility calculated by virtue of the LL

formula, while σ̂ 0, σ̂ 1 and σ 0, σ 1 are given by σ̂ 0 = b̂0, σ̂ 1 =

b̂0 + τ b̂1, and σ 0 = b0, σ 1 = b0 + τb1.
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9. Wing Asymptotics

9.1. General Remarks. It is well known that the high frequency asymptotics for
Fourier integrals cannot be obtained in closed form unless some assumptions about
smoothness or analyticity of the integrand are made. For instance, if f (u) is n times
differentiable and decays at infinity sufficiently rapidly, one can use integration by
parts and show that

I (k) =

∫ ∞
−∞

f (u) e−ikudu = O
(
|k|−n

)
.

Moreover, if f (u) is meromorphic only in a strip −Y+ < Imu < Y−, Y± >
1
2 , then

it can be shown that

(9.1) I (k) ∼
k→±∞

Π± (k) + c±e
−Y±|k|,

where Π± (k) represent contributions of the poles in the lower (upper) half-stip,
respectively, and c± are constants, see, e.g., [87]. Below we show how to use this
result in order to calculate the wing asymptotics for the implied volatility.

9.2. Generic Exponential Lévy Processes. It is easy to apply these general
results in the case of ELPs in order to calculate the wing asymptotics of the implied
volatility.

Proposition 9.1. Assume that the function E (τ , u) in the LL formula is analytical
in a strip −Y+ < Im (u) < Y−, Y± >

1
2 .10 Then the asymptotics for the time value

of a call option δC (τ , k) has the form

(9.2) δC (τ , k) ∼
k→±∞

c±e
−(Y±∓ 1

2 )|k|,

where c± are (positive) constants in (9.1). Accordingly,

(9.3) vimp (τ , k) ∼
k→±∞

β± |k| , σimp (τ , k) ∼
k→±∞

√
β± |k|
τ

,

where

β± = 4
(
Y± −

√
R (Y±)

)
, 0 < β± < 2.

Proof. See Appendix F.1. �

This result is well-known. For instance, Lee derived it by studying moment
explosions, see [69]. However, its simple mathematical nature is seldom emphasized.

We can use these formulas in Proposition 9.1 to obtain expressions for σimp (τ ,∆)
for deep OTM (∆→ 0) and deep ITM (∆→ 1) options.

10According to the Lukacs’s theorem (see, e.g., [81] for a discussion), S (u) is singular at
u = ∓iY±.
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Proposition 9.2. Assume that the assumptions of Proposition 9.1 hold. Then, in
the OTM case we have

σimp (τ , k) ∼
k→∞

√
β+k

τ
,

∆ (τ , k) ∼
k→∞

Φ

((
−

1− 1
2β+√
β+

)
√
k

)
∼

k→∞

√
β+e

− (1−β+/2)2k

2β+(
1− β+/2

)√
k
,

σimp (τ ,∆) ∼
∆→0

β+(
1− 1

2β+

)√−2 ln (∆)

τ
.

Similarly, for ITM, we have

σimp (τ ,∆) ∼
∆→1

β−(
1− 1

2β−
)√−2 ln (1−∆)

τ
.

Combination of these formulas yields

σimp (τ ,∆) ∼
∆(1−∆)→0

βsign(1/2−∆)(
1− 1

2βsign(1/2−∆)

)
√
−

2 ln
(

1
2 − sign (1/2−∆)

(
1
2 −∆

))
τ

.

9.2.1. Specific Exponential Lévy Processes. For specific ELPs, such as TSPs, NIGPs,
MPs, etc., the corresponding formulas can be made explicit.

Proposition 9.3. For TSPs and NIGPs Proposition 9.1 holds provided that the
corresponding Y± are defined as follows:

Y± = κ± ∓
1

2
, β± = ∓2 + 4

(
κ± −

√
κ2
± ∓ κ±

)
, TSP,

Y± = ω̄, β± = 4 (ω̄ − κ̄) , NIG.

Thus, for NIGPs the wing volatility is symmetric. Moreover, for NIGPs the corre-
sponding c± in (9.2) have the form

c± =

√
ω̄

2π |k|3
v

κ̄
eκ̄

2v.

Proof. See Appendices F.2, F.3 for details. �

The situation with MPs is somewhat different.

Proposition 9.4. For MPs Y± =∞, so that the corresponding strip of analyticity
coincides with the whole axis. Accordingly, tail prices decay faster than exponential.
The asymptotic behavior of the price and implied volatility for extreme strikes is
given by

δCM (τ , k) ∼
k→±∞

c± exp

(
−
√

2 ln |k| |k|
η

)
, σimp (τ , k) ∼

k→±∞

√
η |k|

2
√

2 ln |k|τ
,

so that for MPs the wing volatility grows slower than linearly in absolute strike.

Proof. See Appendix F.4 for details. �
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Additional discussion is given in [99], [15], [16] and [55], [56] among others. Fast
decay of the call price in the wings for MPs is in agreement with general results
presented in [1].

Typical cross-sections of the corresponding volatility surfaces for τ = 2y are
shown in Figures 13, 14, respectively. It is clear the quality of the asymptotic
approximation is far from perfect.
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Figure 13. Comparison of the exact and asymptotic expressions
for σimp (k) of the calibrated TSPs for τ = 2.0 and |k| → ∞. Here
and below ”exact” denotes the exact volatility calculated by virtue
of the LL formula, ”approx” denotes the approximate volatility
given by (9.3), and ∆ denotes the BS delta.
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Figure 14. Comparison of the exact and asymptotic expressions
for σimp (k) of the calibrated NIGP and MP for τ = 2.0 and |k| →
∞.
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9.3. Quadratic Volatility Processes.

Proposition 9.5. For QVPs the asymptotic behavior of prices and implied volatil-
ity for extreme strikes is given by

δCQV (τ , k) ∼
k→±∞

c±e
−( 1

2∓
1
2 )|k|, σimp (τ , k) ∼

k→±∞

√
2 |k|
τ
.

Proof. See Appendix F.5. �

A typical cross-section of the volatility surface for τ = 2y is shown in Figure
15(a). Once again, the quality of the asymptotic approximation is poor.

9.4. Heston Stochastic Volatility Processes. It is clear that in order to apply
the general formula to HSVPs, we have to determine the analyticity strip for the
function E (τ , u) given by (5.12). Analyzing the corresponding expression term
by term, one can show that the corresponding strip is defined by the inequalities
−Y+ < Imu < Y−, where ∓Y± are (time-dependent) roots of the equation

F− (∓iY±) + F+ (∓iY±) exp (−Z (∓iY±) τ) = 0,

closest to ∓1/2, respectively

Proposition 9.6. The function E (τ , u) is analytical in the strip Imu ∈ (−Ỹ (τ)+ , Ỹ (τ)−),
where

Ỹ± (τ) ≥ Y± >
1

2
,

Y± are given by (7.14), and ∓Ỹ± (τ) are the largest negative and the smallest
positive real roots of the equation

(ρy + κ̌) + ς (y) + (− (ρy + κ̌) + ς (y)) e−ετς(y) = 0,

where ς (y) is given by (7.16). The wing asymptotics of call prices and implied
volatilities for HSVPs can be written as follows

δCHSV (τ , k) ∼
k→±∞

c±e
−(Ỹ±(τ)∓ 1

2 )|k|, σimp (τ , k) ∼
k→±∞

√
β± |k|
τ

,

where β± = 4

(
Ỹ± (τ)−

√
R
(
Ỹ± (τ)

))
, 0 < β± < 2.

Proof. Straightforward calculation. �

A typical cross-section of the volatility surface for τ = 2y is shown in Figure
15(b). This Figure shows that the quality of wing asymptotics is satisfactory but
not perfect for HSVPs.
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Figure 15. Comparison of the exact and asymptotic expressions
for σimp (k) of the calibrated QVP and HSVP for τ = 2.0 and
|k| → ∞.
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10. Conclusions

This paper has been dedicated to the study of implied volatility asymptotics
for a range of processes that allows for the use the Lewis-Lipton (LL) Fourier-
integral representation of call option prices. Of key importance to us was the class
of exponential Levy processes (ELPs), especially the tempered α-stable processes,
but we also discussed pure diffusion processes of the local and stochastic volatility
types.

As we have demonstrated, the LL representation is highly conducive for asymp-
totic work, as well-established classical methods can be used to carry out examina-
tions of large-time, large-strike, and small-time regimes – albeit occasionally with
some delicacies and often involving quite laborious computations. Our work is quite
complete in establishing the formulas that characterize limit behavior for volatility
of the processes in question.

While some of the technical results in this paper are known, many existing results
in the literature have been derived using a variety of (often complex) methods, and
our paper provides a clean unification of these results along with a variety of new
formulas. Generally speaking these results are theoretically appealing and provide
definitive answers to a number of questions, e.g. whether non-zero limits for FX
risk reversals and butterflies exist for the processes in question.

In order to establish the practical relevance for the various asymptotic results,
we have taken substantial time to undertake numerical comparisons of asymptotics
against the exact LL solution. The difficulty of this task should not be underesti-
mated as the integrals in the exact LL representation become challenging to handle
numerically in the various limits. Nevertheless, once the analysis is carried out,
it becomes clear that the performance of the various asymptotics are definitely a
mixed bag, and overall rather disappointing. For instance, it is clear that most
wing (i.e. large-strike) asymptotics have domains of validity that are exceedingly
small, rendering the results mostly useless in practice. The same holds for small-
time asymptotics of implied volatility for ELPs, where maturities generally need to
be much less than a day for the asymptotics to be accurate. On the other hand,
small-time asymptotics work well for diffusion processes with local and stochastic
volatility, where it is not uncommon to find that options with maturities of several
years can be successfully studied in the short-time limit. This discrepancy of perfor-
mance is perhaps understandable given that ELPs (with jumps) are fundamentally
different from diffusions, especially when observed at small time scales.

For ELPs, what does seem to work reasonable well in many case are the long-term
asymptotics where the domain of validity is often respectably large (say, covering
maturities larger than one or two years). Unfortunately, this behavior is neither
universal nor particularly robust, and it is not difficult to find examples of ELP
configurations which, while matching the market well, result in poor long-term
asymptotics. For instance, we have observed that for tempered α-stable processes
the region of validity of the long-term asymptotics is sometimes dramatically re-
duced when the parameter α is greater than one.

In summary, while ELPs are viable candidates for describing FX market dy-
namic, it is relatively difficult to analyze their behavior in pertinent asymptotic
regimes. In order to accomplish this task successfully, one has to combine analyti-
cal and numerical methods, and even then success is not guaranteed.
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[101] Raible, S., Lévy processes in finance: theory, numerics and empirical facts. PhD Thesis,
Freiburg University, 2000.

[102] Reiswich, D. and Wystup, U., A guide to FX options quoting conventions. The Journal of

Derivatives, Winter 2010, 18, No. 2, 58-68.
[103] Rogers, L.C.G. and Tehranchi, M.R., Can the implied volatility surface move by parallel

shifts? Finance and Stochastics, 2010, 14:2, 235-248.

[104] Rogers, L.C.G. and Zane, O., Saddlepoint approximations to option prices. Annals of Ap-
plied Probability, 1999, 9, 493-503.

[105] Roper, M., Implied volatility explosions: European calls and implied volatilities close to
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[111] Schoutens, W. Lévy Processes in Finance, 2003 (Wiley: Chichester).
[112] Sokolov, I.M. and Klafter, J., From diffusion to anomalous diffusion: a century after Ein-

stein’s Brownian motion. Working Paper, 2008.
[113] Sousa, E., Numerical approximation for the fractional diffusion equation via splines. Uni-

versidade de Coimbra Working Paper, 2009.

[114] Stewart, G.W., Matrix Algorithms: Basic Decompositions, 1998 (SIAM: Philadelphia).
[115] Tadjeran, C., Meerschaert, M.M., and Scheffler, H.-P., A second-order accurate numerical

approximation for the fractional diffusion equation. Journal of Computational Physics, 2006,
213, 205-213.

[116] Tankov, P., Pricing and hedging in exponential Lévy models: review of recent results. Lecture
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Appendix A. Fractional PIDEs

For α ∈ (0, 1) we can rewrite the regularized integrals in the pricing equation
as follows

Iα,s =
(−s)α

Γ (−α)

∫ ∞
0

(V (x+ sy)− V (x))
e−κsydy

y1+α

=
(−s)α

Γ (−α)

∫ ∞
0

(
e−κsyV (x+ sy)− V (x) +

(
1− e−κsy

)
V (x)

) dy

y1+α

=
(−s)α

Γ (−α)
esκsx

∫ ∞
0

(
Ṽ (x+ sy)− Ṽ (x)

) dy

y1+α

+
(−s)α

Γ (−α)

∫ ∞
0

(1− e−κsy) dy

y1+α
V (x)

= esκsxDα
s

(
e−sκsxV

)
− (−s)α καs V,

where Ṽ (x) = e−sκsxV (x). Similarly, for α ∈ (1, 2) we have

Iα,s =
(−s)α

Γ (−α)

∫ ∞
0

(V (x+ sy)− V (x)− syVx (x))
e−κsydy

y1+α

=
(−s)α

Γ (1− α)

∫ ∞
0

(V (x+ sy)− V (x)− syVx (x)) e−κsyd

(
1

yα

)
=

(−s)α

Γ (1− α)

∫ ∞
0

(−s (Vx (x+ sy)− Vx (x)) + κs (V (x+ sy)− V (x)− syVx (x)))
e−κsydy

yα

=
(−s)α−1

Γ (1− α)
esκsx

∫ ∞
0

(
Ṽx (x+ sy)− Ṽx (x)

) dy

y1+(α−1)

+
(−s)α−1

Γ (1− α)

∫ ∞
0

(1− e−κsy) dy

y1+(α−1)
esκsxṼx (x) +

(−s)α−1

Γ (1− α)
κs

∫ ∞
0

e−κsydy

yα−1
Vx (x)

= esκsxDα
s

(
e−sκsxV

)
− (−s)α−1

ακα−1
s Vx (x)− (−s)α καs V (x) ,

where Ṽ (x) = e−sκsxV (x). Accordingly, PIDEs (4.8), (4.9) can be written as

Vt + γVx +
1

2
σ2 (Vxx − Vx) +

∑
s=±

(−s)α asesκsxDα
s

(
e−sκsxV

)
−
∑
s=±

asκ
α
s V = 0,

and

Vt+

(
γ +

∑
s=±

sasακ
α−1
s

)
Vx+

1

2
σ2 (Vxx − Vx)+

∑
s=±

(−s)α asesκsxDα
s

(
e−sκsxV

)
−
∑
s=±

asκ
α
s V = 0.

Appendix B. The Green’s Function and Call Prices for Gauss-Lévy
and Tempered Gauss-Lévy Processes

We start with the following assumptions: α ∈ (0, 1), volatility is zero, σ = 0,
the process is maximally skewed to the left and there is no dumping, c+ = 0,
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c− > 0, κ± = 0. For brevity we omit subscripts where possible. The corresponding
backward and forward equations have the form

Vt + γVx + c

∫ ∞
0

(V (x− y)− V (x))
dy

y1+α
= 0, V (T, x) = VT (x) ,

G
(α)
t + γG(α)

x − c
∫ ∞

0

(
G(α) (x+ y)−G(α) (x)

) dy

y1+α
= 0, G(α) (0, x) = δ (x) .

where γ = −a = −Γ (−α) c = sec (απ/2)ϑα > 0, or, in terms of fractional deriva-
tives,

Vt + γVx + aDα
− (V ) = 0, V (T, x) = VT (x) ,

G
(α)
t + γG(α)

x − (−1)
α
aDα

+

(
G(α)

)
= 0, G(α) (0, x) = δ (x) .

Lemma B.1. Let G(α) (t, x) be the Green’s function for a maximally negatively
skewed stable process, such that

P (X(t) ∈ [x, x+ dx]) = G(α) (t, x) .

Then, due to the scaling invariance of the corresponding process, we have

G(α) (t, x) =
1

ι1/α
g(α) (ξ) ,

where

ι = sec
(απ

2

)
ϑαt, ξ =

(x− ι)
ι1/α

,

and g(α) (.) is an appropriate positive function of a single variable, which satisfies
the following ordinary integro-differential equation

(B.1) ξg(α) (ξ) +
1

Γ (1− α)

∫ ∞
0

g(α)
(
ξ + ξ′

) dξ′
ξ′α

= 0.

In particular, the Green’s function associated with the LGP has the form

(B.2) G(1/2) (t, x) =
1

ι2
g(1/2) (ξ) ,

where

ι =
√

2ϑt, ξ =
(x− ι)
ι2

, g(1/2) (ξ) =
exp

(
1
4ξ

)
2
√
π (−ξ)3/2

1ξ<0.

This density is known as the Lévy distribution.

Proof. In order to calculate G(α) we use the following ansatz

G(α) (t, x) =
1

ια′
g(α)

(
x− ι
ια′

)
,

where ι = γt, and α′ = 1/α. Its validity is verified below. Since∫ ∞
−∞

G(α) (t, x) dx =

∫ ∞
−∞

g(α)

(
x− ι
ια′

)
d

(
x− ι
ια′

)
=

∫ ∞
−∞

g(α) (ξ) dξ,

we have to impose the following constraints on g:

(B.3) g(α) (ξ) ≥ 0, g(α) (ξ) →
ξ→±∞

0,

∫ ∞
−∞

g(α) (ξ) dξ = 1,
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which, broadly speaking, play the role of initial and boundary conditions. We have

0 = G
(α)
t (t, x) + γG(α)

x (t, x)− (−1)
α
aDα

+G
(α) (t, x)

= − α′γ

ια′+1

(
ξg

(α)
ξ (ξ) + g(α) (ξ)

)
− (−1)

α

ια′+αα′
aDα

+g
(α) (ξ) .

It is clear that t-dependence disappears and the integro-differential equation for
g (ξ) becomes

(B.4) ξg
(α)
ξ (ξ) + g(α) (ξ) + (−1)

α
αDα

+g
(α) (ξ) = 0.

Here −∞ < ξ < 0. If so desired, we can manipulate this equation further. Specifi-
cally, we can integrate by parts and write(

ξg(α) (ξ)
)
ξ

+
1

Γ (1− α)

∫ ∞
0

g
(α)
ξ

(
ξ + ξ′

) dξ′
ξ′α

= 0,

or, after integration over the interval (−∞, ξ],

ξg(α) (ξ) +
1

Γ (1− α)

∫ ∞
0

g(α)
(
ξ + ξ′

) dξ′
ξ′α

= 0,

which is (B.1). In particular, it is easy to check directly that for the LGPs with

α = 1/2, c+ = 0, c− =
√

2ϑ, the corresponding g(1/2) is given by (B.2). The case
of α ∈ (1, 2) can be studied in a similar fashion. �

It is clear that our calculations make sense by virtue of the fact that the cor-
responding maximally skewed stable processes are scale-invariant. Since two-sided
stable processes possess this property as well, the above calculations can be repeated
verbatim for such processes. It can be shown that the PDFs of standard stable laws
have the following support: (A) the positive semi-axis if α ∈ (0, 1) , c− = 0; (B)
the negative semi-axis if α ∈ (0, 1) , c+ = 0; (C) the whole axis in all other cases.
If α ∈ (0, 2), c+ > 0, c− ≥ 0, then for ξ →∞ we have

g(α) (ξ|α, β) ∼ ξ−(α+1).

If α ∈ (0, 2), c+ ≥ 0, c− > 0, then for ξ → −∞ we have

g(α) (ξ|α, β) ∼ |ξ|−(α+1)
.

Thus, for all α ∈ (0, 2), c+ > 0, c− > 0, both tails are described by power laws. If
c− = 0 (c+ = 0), then the left (right) tail is described by an exponential law.

It is clear that appropriately transformed tempered stable density is not scale-
invariant unless it is maximally skewed. Because of that, we only deal with max-
imally skewed TSPs.11 Thus, we assume that α ∈ (0, 1), σ = 0, c− > 0, κ− > 0,
and c+ = 0. For brevity, we omit subscripts. In this case, backward equation (4.8)
simplifies to the form

Vt + γVx + c

∫ ∞
0

(V (x− y)− V (x))
e−κydy

y1+α
= 0,

where γ = −ζa = −Γ (−α) ζc > 0, ζ = (κ+ 1)
α − κα. The corresponding adjoint

equation for the Green’s function G(α,κ) (t, x) is

G
(α,κ)
t + γG(α,κ)

x − c
∫ ∞

0

(
G(α,κ) (x+ y)−G(α,κ) (x)

) e−κydy
y1+α

= 0.

11It is clear that two-sided TSPs cannot be treated along similar lines because of the violation
of scaling properties.
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Equivalently, the backward and forward equations can be written in terms of frac-
tional derivatives as follows

Vt + γVx + ae−κxDα
− (eκxV ) + δV = 0, V (T, x) = v (x) ,

(B.5)

G
(α,κ)
t +γG(α,κ)

x −(−1)
α
aeκxDα

+

(
e−κxG(α,κ)

)
−δG(α,κ) = 0, G(α) (0, x) = δ (x) ,

where δ=−καa = −Γ (−α)καc > 0. It turns out that for a maximally skewed TSP
can be converted into a maximally skewed SP via a simple scaling transformation.

Lemma B.2. Let G(α,κ) (t, x) be the Green’s function for a maximally negatively
skewed tempered stable process. Then

(B.6) G(α,κ) (t, x) =
exp (ι1 + κ (x− (ι2 − ι1)))

ι1/α
g(α) (ξ) ,

where

ι = sec
(απ

2

)
ϑαt, ι1 = και, ι2 = (κ+ 1)

α
ι, ξ =

(x− (ι2 − ι1))

ι1/α
.

In particular, for α = 1/2 we have

(B.7) G(1/2,κ) (t, x) =
exp (ι1 + κ (x− (ι2 − ι1)))

ι2
g(1/2) (ξ) ,

where

ι =
√

2ϑt, ι1 =
√
κι, , ι2 =

√
κ+ 1ι, ξ =

(x− (ι2 − ι1))

ι2
.

Proof. After some tedious algebra it can be show that solution of (B.5) can be
written in the form

G(α,κ) (t, x) = ζ−
1

(1−α) eκ
αι+κ(x−ζι)G(α)

(
ζ−

α
(1−α) ι, ζ−

1
(1−α)x

)
.

Accordingly, we can represent G(α,κ) (t, x) as follows

G(α,κ) (t, x) =
eκ

αι+κ(x−ζι)

ι1/α
g(α)

(
x− ζι
ι1/α

)
,

where g(α) satisfies (B.1) subject to (B.3). In particular, for the TLGPs we have
(B.7). �

Next, we consider prices of options for maximally skewed stable and tempered
stable process via the Esscher transform technique (see, e.g., [54]). Due to the
strong localization of the corresponding Green’s function, we can define its Esscher
transform as follows

g(α) (ξ)⇒ g(α,p) (ξ) =
epξg(α) (ξ)

E
{
epξg(α) (ξ)

} = epξ−ψ(−ip)g(α) (ξ) ,

As usual, we denote the corresponding complementary cumulative function as

Γ(α,p) (ξ) =

∫ ∞
ξ

g(α,p)
(
ξ′
)
dξ′.
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With this notation in mind, we can write the price of a call option on a maximally
skewed SP as follows

C (ι, k) =

∫ ∞
k

(
ex − ek

) 1

ι1/α
g(α)

(
x− ι
ι1/α

)
dx

=

∫ ∞
k−ι
ι1/α

(
eι+ι

1/αξ − eκ
)
g(α) (ξ) dξ

= eι+ψ(−iι1/α)Γ(α,ι1/α)
(
k − ι
ι1/α

)
− ekΓ(α,0)

(
k − ι
ι1/α

)
.

In particular, for the LGP, assuming that k < ι, we can represent the normalized
price of a call option as follows

C (ι, k) =
ι

2
√
π

∫ ι

k

(
ex − ek

) e−
ι2

4(ι−x)

(ι− x)
3/2

dx

=
1

2
√
π

∫ 0

k−ι
ι2

(
eι+ι

2ξ − ek
) e

1
4ξ

(−ξ)3/2
dξ

= eιD (v, 2ι)− ekD (v, 0) ,

where v = 2ι2/ (ι− k). In order to compute the corresponding integrals explicitly,
we use the change of variables ξ = −1/2z2. For maximally skewed TLGP we can
represent the price of a call option as follows

C (ι, k) =
ι

2
√
π

∫ ι2−ι1

k

(
ex − ek

) eι1+κ(x−(ι2−ι1))− ι2

4((ι2−ι1)−x)

(ι2 − ι1 − x)
3/2

dx

=
eι1

2
√
π

∫ 0

k−(ι2−ι1)

ι2

(
eι2−ι1−ι

2ξ − ek
) eκι2ξ+ 1

4ξ

(−ξ)3/2
dξ

= eι2D (v, 2ι2)− ek+ι1D (v, 2ι1) ,

where v = 2ι2/ (ι2 − ι1 − k).

Appendix C. The Implied Volatility Expansion

By definition,

C (τ , k) = Φ

(
− k

σ̄imp
+
σ̄imp

2

)
− ekΦ

(
− k

σ̄imp
− σ̄imp

2

)
,

Ck (τ , k) = φ

(
− k

σ̄imp
+
σ̄imp

2

)
∂kσ̄imp − ekΦ

(
− k

σ̄imp
− σ̄imp

2

)
,

Ckk (τ , k) = φ

(
− k

σ̄imp
+
σ̄imp

2

)(
∂2
kσ̄imp + ∂kσ̄imp −

σ̄imp (∂kσ̄imp)
2

4

+
1

σ̄imp
+
k2 (∂kσ̄imp)

2

σ̄3
imp

− 2k∂kσ̄imp
σ̄2
imp

)
− ekΦ

(
− k

σ̄imp
− σ̄imp

2

)
.

For k = 0 we have

(C.1) C (τ , 0) = Φ

(
χ̄0 (τ)

2

)
− Φ

(
− χ̄0 (τ)

2

)
∼ 1√

2π

(
1− χ̄2

0 (τ)

24

)
χ̄0 (τ) ,
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Ck (τ , 0) = φ

(
χ̄0 (τ)

2

)
χ̄1 (τ)− Φ

(
− χ̄0 (τ)

2

)
(C.2)

∼ 1√
2π

(
1− χ̄2

0 (τ)

8

)
χ̄1 (τ) +

1

2
(C (τ , 0)− 1) ,

Ckk (τ , 0) = φ

(
χ̄0 (τ)

2

)(
χ̄2 (τ) + χ̄1 (τ)− 1

4
χ̄0 (τ) χ̄2

1 (τ) +
1

χ̄0 (τ)

)
− Φ

(
− χ̄0 (τ)

2

)(C.3)

∼ 1√
2π

(
1− χ̄2

0 (τ)

8

)(
χ̄2 (τ)− 1

4
χ̄0 (τ) χ̄2

1 (τ) +
1

χ̄0 (τ)

)
+ Ck (τ , 0) .

Comparison of (8.2), (C.1) - (C.3) yields(
1− χ̄2

0 (τ)

24

)
χ̄0 (τ) = l̂ (τ) ,(

1− χ̄2
0 (τ)

8

)
χ̄1 (τ) = m̂ (τ) ,(

1− χ̄2
0 (τ)

8

)(
χ̄2 (τ)− 1

4
χ̄0 (τ) χ̄2

1 (τ) +
1

χ̄0 (τ)

)
= n̂ (τ) ,

χ̄0 (τ) ∼ l̂ (τ)

(
1 +

l̂2 (τ)

24

)
,

χ̄1 (τ) ∼ m̂ (τ)

(
1 +

l̂2 (τ)

8

)
,

χ̄2 (τ) ∼ − 1

l̂ (τ)
+

l̂ (τ)

24
+

1

4
l̂ (τ) m̂2 (τ) + n̂ (τ)

(
1 +

l̂2 (τ)

8

)
.

Noticing that χ̄i (τ) = χi (τ) τ1/2, we obtain the result.

Appendix D. Long-time Asymptotics

D.1. Exponential Lévy Processes. Due to the fact that we have chosen a para-
metric representation of k̄ in terms of y, so that we know that the saddlepoint is
located on the imaginary axis at u = iy, it is easy to perform the corresponding
saddlepoint calculation. When − 1

2 < y < 1
2 , we can perform parallel move of the

contour of integration to a new contour given by the equation

Imu = y,

without hitting singularities located at u = ±i/2. Accordingly, we can approximate
the price of the call option as follows

(D.1) C
(
τ , k̄ (y) τ

)
= 1 +

1√
2πτ

eτΞ
(+)
01 (y)c0 (y)

(
1− 1

τ
c1 (y)

)
.

When −κ+ + 1
2 < y < − 1

2 or 1
2 < y < κ−+ 1

2 , in the process of moving the contour
of integration, we shall hit the points u = −i/2 and i/2, respectively. We note that

S+ = S

(
i

2

)
= k̄, S− = S

(
− i

2

)
= a+ (κ+ − 1)

α
+ a− (κ− + 1)

α
+ γ + δ = 0,
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so that, by virtue of the Cauchy theorem, the corresponding approximate prices
can be written as
(D.2)

C
(
τ , k̄ (y) τ

)
=

{
1− ek̄(y)τ + 1√

2πτ
eτΞ

(+)
01 (y)c0 (y)

(
1− 1

τ c1 (y)
)
, 1

2 < y < κ− + 1
2 ,

1√
2πτ

eτΞ
(+)
01 (y)c0 (y)

(
1− 1

τ c1 (y)
)
, −κ+ + 1

2 < y < − 1
2 .

Comparison on expressions (D.1), (D.2) and (6.6) immediately yields (7.7).
Consider y ∈ (−Y+,Y−) and define

(D.3) Ξ2 (y) = Ξ′′0 (y) , Ξ3 (y) = Ξ′′′0 (y) , Ξ4 (y) = Ξ′′′′0 (y) ,

(D.4)

f0 (y) =
1

R (y)
, f1 (y) = f ′0 (y) = − 2y

(R (y))
2 , f2 (y) = f ′′0 (y) =

(
6y2 + 1

2

)
(R (y))

3 ,

c0 (y) =
f0 (y)√
Ξ2 (y)

=
1√

Ξ2 (y)R (y)
,(D.5)

c1 (y) = − 1

2Ξ2 (y)

(
f2 (y)

f0 (y)
− Ξ3 (y) f1 (y)

Ξ2 (y) f0 (y)
+

5Ξ2
3 (y)

12Ξ2
2 (y)

− Ξ4 (y)

4Ξ2 (y)

)
− 1

2Ξ2 (y)

((
6y2 + 1

2

)
(R (y))

2 +
2yΞ3 (y)

R (y) Ξ2 (y)
+

5Ξ2
3 (y)

12Ξ2
2 (y)

− Ξ4 (y)

4Ξ2 (y)

)
,

a0 (y) = 2 (s+ (y)− s− (y))
2
,(D.6)

a1 (y) =
2 ln

(
a

1/2
0 (y) r (y) c0 (y)

)
r (y)

,

a2 (y) =
2c1 (y)

r (y)

+

(
r (y) a1 (y)

(
(r (y) a1 (y)− 3)

(
r (y) + 1

4

)
− 1

4

)
+ 6r (y) + 2

)
r3 (y) a0 (y)

,

(D.7) b0 (y) = a
1/2
0 (y) , b1 (y) =

a1 (y)

2a
1/2
0 (y)

, b2 (y) =
4a0 (y) a2 (y)− a2

1 (y)

8a
3/2
0 (y)

,

where

(D.8) s± (y) = sign

(
y ± 1

2

)√
−Ξ01,± (y), r (y) = R

(
Ξ1 (y)

a0 (y)

)
.
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D.2. Tempered Stable Processes. For completeness we present explicit formu-
las for Ξi:

Ξ0 (y) =
1

2
σ2

(
y2 − 1

4

)
+
∑
s=±

as

(
κs + s

(
y − 1

2

))α
− γ

(
y − 1

2

)
+ δ,

Ξ1 (y) = σ2y + α
∑
s=±

sas

(
κs + s

(
y − 1

2

))α−1

− γ,

Ξ2 (y) = σ2 + α (α− 1)
∑
s=±

as

(
κs + s

(
y − 1

2

))α−2

,

Ξ3 (y) = α (α− 1) (α− 2)
∑
s=±

sas

(
κs + s

(
y − 1

2

))α−3

,

Ξ4 (y) = α (α− 1) (α− 2) (α− 3)
∑
s=±

as

(
κs + s

(
y − 1

2

))α−4

.

D.3. Normal Inverse Gaussian Processes. For completeness, we present ex-
plicit expressions for Ξi:

Ξ0 (y) = σ2κ̄ (κ̄ − Λ (y)) ,

Ξ1 (y) = σ2κ̄yΛ−1 (y) ,

Ξ2 (y) = σ2κ̄ω2Λ−3 (y) ,

Ξ3 (y) = 3σ2κ̄ω2yΛ−5 (y) ,

Ξ4 (y) = 3σ2κ̄ω2
(
ω2 + 4y2

)
Λ−7 (y) ,

where Λ (y) =
√
ω̄2 − y2.

By using (4.18), we can calculate long-time asymptotics for call prices directly.

For k = k̂v and v →∞, where v = σ2τ , we have

CNIG
(
v, k̂v

)
=
ω̄κ̄veκ̄2v

π

∫ ∞
k̂v

(
e
x
2 − ek̂v− x2

)
K1

(
ω̄
√
x2 + κ̄2v2

)
√
x2 + κ̄2v2

dx

= 1− ω̄κ̄veκ̄2v

π

(∫ ∞
− k̂

2κ̄

e−κ̄vyK1

(
2ω̄κ̄vQ1/2 (y)

)
Q1/2 (y)

dy

+

∫ ∞
k̂

2κ̄

ek̂v−κ̄vyK1

(
2ω̄κ̄vQ1/2 (y)

)
Q1/2 (y)

dy

)

∼ 1−
√
ω̄κ̄v
4π

eκ̄
2v

(∫ ∞
− k̂

2κ̄

e−κ̄v(y+2ω̄Q1/2(y))

Q3/4 (y)

(
1 +

3

16ω̄κ̄vQ1/2 (y)

)
dy

+ek̂v
∫ ∞
k̂

2κ̄

e−κ̄v(y+2ω̄Q1/2(y))

Q3/4 (y)

(
1 +

3

16ω̄κ̄τ̄Q1/2 (y)

)
dy

)
,

where x = ±2κ̄vy. Consider the following function

Σ (y) = κ̄
(
y + 2ω̄Q1/2 (y)

)
.
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It is easy to show that on the real axis this function has a unique global minimum
y∗ such that

y∗ = − 1

4κ̄
, Σ∗ = Σ (y∗) = κ̄2.

Assuming for brevity that
∣∣∣k̂∣∣∣ < 1/2, so that this point lies outside the domain

of integration for both integrals in the above expression, we can use the original
Laplace method to evaluate these integrals asymptotically and get

C
(
v, k̂v

)
∼ 1 +

√
ω̄

πκ̄v
e
κ̄v
(
κ̄+ k̂

2κ̄−2ω̄Q̂1/2
)
Q̂1/4

R
(
k̂
)

×

1− 1

κ̄v

 3ω̄k̂2

2κ̄R
(
k̂
)
Q̂1/2

−

√
2ω̄Q̂1/4

(
R
(
k̂
) (

1 + 3κ̄2
)

+ ω̄2
)

κ̄2R2
(
k̂
) − 3

16ω̄Q̂1/2

 ,

where Q̂ = Q
(
k̂/2κ̄

)
. This expression agrees with the one obtained via the sad-

dlepoint method.

D.4. Merton Processes. For completeness we present explicit formulas for Ξi:

Ξ0 (y) =
1

2
σ2R (y) + λ

(
Λ̄ (y)− 1− (1− eq)

(
y − 1

2

))
,

Ξ1 (y) = σ2y + λ
((
−q + η2y

)
Λ̄ (y)− (1− eq)

)
,

Ξ2 (y) = σ2 + λ
(
η2 +

(
−q + η2y

)2)
Λ̄ (y) ,

Ξ3 (y) = λ
(
−q + η2y

) (
3η2 +

(
−q + η2y

)2)
Λ̄ (y) ,

Ξ4 (y) = λ
(

3η4 + 6η2
(
−q + η2y

)2
+
(
−q + η2y

)4)
Λ̄ (y) ,

where Λ̄ (y) = e−q(y−
1
2 )+ η2

2 R(y).

D.5. Heston Stochastic Volatility Processes. Substitution of u = iy in (7.13)
yields

Ξ0 (y) =
κθ

ε
(ρy + κ̌− ς (y)) ,

f0 (y) =
e$0(ρy+κ̌−ς(y))/ε

R (y)
(
ρy+κ̌+ς(y)

2ς(y)

)2κθ/ε2
,

ς (y) =

√
−ρ̄2y2 + 2ρκ̌y + κ̌2 +

1

4
.

Differentiation of Ξ0 (y) gives explicit expressions for Ξ1 (y) ,Ξ2 (y):

Ξ1 (y) =
κθ

ε

(
ρ− −ρ̄

2y + ρκ̌

ς (y)

)
, Ξ2 (y) =

κθ

ς (y)

(
ρ̄2 +

(
−ρ̄2y + ρκ̌

)2
ς2 (y)

)
.

Let y∗
(
k̄
)

is a saddlepoint such that

Ξ1 (y∗) + k̄ = 0.
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A simple calculation yields

ς (y∗) =
−ρ̄2y∗ + ρκ̌

l
,

where l = ρ + εk̄/κθ. After squaring this relation, we arrive at the following
quadratic equation

ρ̄2y∗2 − 2ρκ̌y∗ − κ̌2 +
κ̌2 − 1

4 l
2

ρ̄2 + l2
= 0,

which has two roots

y∗± =
ρκ̌±

√
κ̌2 − ρ̄2

(
κ̌2 − 1

4 l
2
)
/ (ρ̄2 + l2)

ρ̄2
.

It is easy to show that the relevant root has the form

y∗
(
k̄
)

=
ρκ̌− sign (l)

√
κ̌2 − ρ̄2

(
κ̌2 − 1

4 l
2
)
/ (ρ̄2 + l2)

ρ̄2
,

and

Ξ01,±
(
k̄
)

=
κθ

εl

((
ρ̄2 + ρl

)
y∗
(
k̄
)

+ (l − ρ) κ̌
)
± 1

2
k̄.

Thus, to the leading order, σimp,0
(
k̄
)

is given by (7.17).
When k ∼ τ , the corresponding option becomes deep OTM or ITM, with one

notable exception, which can be described as follows. Consider the implied volatility
as a function of ∆, and in particular, calculate Σ (τ , 0.5). For brevity, denote
Σ (τ , 0.5) by Σ̄. It is clear that the corresponding k̄ has the form k̄ = Σ̄2/2. We see
that Σ̄ can be found from the following nonlinear equation

Σ̄ = σimp,0

(
Σ̄2

2

)
,

which can be solved numerically via a simple Newton-Raphson method.

Appendix E. Short-time Asymptotics

E.1. Tempered Stable Processes. If α ∈ (0, 1), then

∂

∂τ
C (0, k) = −e

k
2

2π

∫ ∞
−∞

υ (u) e−iku

Q (u)
du.

Since the last integral converges and no further treatment is needed.
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If α ∈ (1, 2), then we need to do integration by parts first (which is possible
because k 6= 0):

∂

∂τ
C (0, k) = −e

k
2

2π

∂

∂τ

(∫ ∞
−∞

eτυ(u)−iku

Q (u)
du

)∣∣∣∣∣
τ=0

= −e
k
2

2π

∂

∂τ

(∫ ∞
−∞

eτυ(u)

Q (u)
d

(
e−iku

−ik

))∣∣∣∣∣
τ=0

= − e
k
2

2πik

∂

∂τ

(∫ ∞
−∞

e−ikud

(
eτυ(u)

Q (u)

))∣∣∣∣∣
τ=0

= − e
k
2

2πik

∂

∂τ

(∫ ∞
−∞

(
τυ′ (u)

Q (u)
− 2u

Q2 (u)

)
eτυ(u)−ikudu

)∣∣∣∣∣
τ=0

= − e
k
2

2πik

∫ ∞
−∞

(
υ′ (u) + τυ′ (u) υ (u)

Q (u)
− 2uυ (u)

Q2 (u)

)
eτυ(u)−ikudu

∣∣∣∣∣
τ=0

= − e
k
2

2πik

∫ ∞
−∞

(
υ (u)

Q (u)

)′
e−ikudu,

where the last integral clearly converges.
We are now ready to consider the ATM case. For convenience, we summarize

our existing notation and introduce additional notation which is used below. We
have

υ (u) =
∑
s=±

as

(
κs − s

(
iu+

1

2

))α
+ γ

(
iu+

1

2

)
+ δ,

υ̃ (u) =
∑
s=±

as

(
κs − s

(
iu+

1

2

))α
,

υ̂ (u) =
∑
s=±

as (−siu)
α
.

It is clear that for real u we have

υ̂ (u) = (p+ iqsign (u)) |u|α .

In case (A) we use change of variables v = τu and represent the integrals l,m, n
as follows

l (τ) = τL (τ) , m (τ) = M (τ) , n (τ) = τ−1N (τ) ,

where L,M,N have the form (8.6) with

E (τ , v) = exp

(
τ1−α

∑
s=±

as

(
τ
(
κs −

s

2

)
− siv

)α
+ ivγ + τ

(γ
2

+ δ
))

≡ exp (θ1 (τ , v)) .

As before, we represent L as follows:

L (τ) = Lε0 (τ) + L∞ε (τ) ,
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where

Lβα (τ) =
1

π
Re

{∫ β

α

1− eθ1(τ,v)

v2 + 1
4τ

2
dv

}
.

Expansion near the origin for ε→ 0 yields

Lε0 (τ) ∼ − 1

π
Re

{∫ ε

0

θ1 (τ , v)

v2 + 1
4τ

2
dv

}
= − τ

πτ
Re

{∫ ε/τ

0

υ̃ (u) + γ
2 + δ

Q (u)
du

}

∼ − 1

π
Re

{∫ ∞
0

υ̃ (u)

u2 + 1
4

du

}
− γ

2
− δ

= −
(γ

2
+ δ + %

)
,

while the DCT yields

L∞ε (τ) ∼ |γ|
2
,

so that

L (τ) = −
(
γ− + δ + %

)
≡ C(a)

L .

Here we use the fact that

1

π
Re

{∫ ∞
0

υ̃ (u)

Q (u)
du

}
= %,

which can be verified directly. For M (τ) we obtain

M (τ) = − 1

π
Im

{∫ ∞
0

eθ1(τ,v)

v2 + 1
4τ

2
vdv

}
∼ − 1

π
Im

{∫ ∞
0

eγiv
dv

v

}
= − 1

π

∫ ∞
0

sin (γv)
dv

v

= −1

2
sign (γ) ≡ C(a)

M .

For N (τ) we obtain

N (τ) =
1

π
Re

{∫ ∞
0

eθ1(τ,v)dv

}
∼ 1

π
Re

{∫ ∞
0

eγivdv

}
= δ (γ) ≡ C(a)

N .

In case (B) we use change of variables v = τα
′
u, where α′ = 1/α, and rewrite the

corresponding integrals as follows

l (τ) = τα
′
L (τ) , m (τ) = M (τ) , n (τ) = τ−α

′
N (τ) ,
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where

L (τ) =
1

π
Re

{∫ ∞
0

1− E (τ , v)

v2 + 1
4τ

2α′
dv

}
,

M (τ) = − 1

π
Im

{∫ ∞
0

E (τ , v)

v2 + 1
4τ

2α′
vdv

}
,

N (τ) =
1

π
Re

{∫ ∞
0

E (τ , v) dv

}
,

E (τ , v) = exp

(∑
s=±

as

(
τα
′
(
κs −

s

2

)
− siv

)α
+ iτ1−α′vγ + τ

(γ
2

+ δ
))

≡ exp (θα′ (τ , v)) .

As before

L (τ) = Lε0 (τ) + L∞ε (τ) ,

where

L0 (τ) = − 1

π
Re

{∫ ε

0

θα′ (τ , v)

v2 + 1
4τ

2α′
du

}
→
τ→0

O (ε) ,

L∞ε (τ) ∼ 1

π
Re

{∫ ∞
0

1− eυ̂(v)

v2
dv

}
=

1

π
Re

{∫ ∞
0

1− e(p+iq)|v|α

v2
dv

}
= −α

′

π
Γ (−α′) Re

{
(−p− iq)α

′}
=

Γ (1− α′)
π

rα
′
cos (α′χ) ≡ C(B)

L > 0.

Thus,

L (τ) =
1

π
Γ (1− α′) rα

′
cos (α′χ) = C

(B)
L .

For M (τ) we have

M (τ) = − 1

π
Im

{∫ ∞
0

eθα′ (τ,v)(
v2 + 1

4τ
2α′
)vdv}

∼ − 1

π
Im

{∫ ∞
0

eυ̂(v)

v
dv

}
= − 1

π
Im

{∫ ∞
0

exp ((p+ iq) vα)
dv

v

}
= −α

′

π
arg ((p+ iq))

= −α
′χ

π
≡ C(B)

M .
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Finally, for N (τ) we have

N (τ) =
1

π
Re

{∫ ∞
0

eθα′ (τ,v)dv

}
∼ 1

π
Re

{∫ ∞
0

eυ̂(v)dv

}
=

1

π
Re

{∫ ∞
0

exp ((p+ iq) vα) dv

}
=

Γ (1 + α′)

π
Re
{

(− (p+ iq))
−α′
}

=
Γ (1 + α′)

π
r−α

′
cos (α′χ) ≡ C(B)

N < 0.

In case (C) we use change of variables v = τ1/2u and rewrite the corresponding
integrals as follows

l (τ) = τ1/2L (τ) , m (τ) = M (τ) , n (τ) = τ−1/2N (τ) ,

where

L (τ) =
1

π
Re

{∫ ∞
0

1− E (τ , v)

v2 + τ
4

dv

}
,

M (τ) = − 1

π
Im

{∫ ∞
0

E (τ , v)

v2 + τ
4

vdv

}
,

N (τ) =
1

π
Re

{∫ ∞
0

E (τ , v) dv

}
,

E (τ , v) = exp

(
τ1−α/2

∑
s=±

as

(
τ1/2

(
κs −

s

2

)
− siv

)α
+ iτ1/2vγ + τ

(γ
2

+ δ
)
− σ2

2

(
v2 +

τ

4

))
≡ exp

(
θ1/2 (τ , v)

)
.

As before

L (τ) = Lε0 (τ) + L∞ε (τ) ,

where

Lε0 (τ) ∼ −
(

1

π
Re

{∫ ∞
0

υ̂ (u)

Q (u)
du

}
+
γ

2
+ δ

)
τ1/2,

L∞ε (τ) ∼ 1

π

∫ ∞
0

1− exp
(
−σ

2

2 v
2
)

v2
dv =

σ√
2π
,

so that

L (τ) ∼ σ√
2π
−
(γ

2
+ δ + %

)
τ1/2 =

σ√
2π

+ C
(C)
L τ1/2.
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Likewise, for M (τ) we have

M (τ) ∼ − 1

π
Im

{∫ ∞
0

e−
σ2

2 v
2 (
γτ1/2iv + τ1−α/2υ̂ (v)

)
v

dv

}

= −γτ
1/2

π

∫ ∞
0

e−
σ2v2

2 dv − qτ1−α/2

π

∫ ∞
0

e−
σ2v2

2 vα−1dv

= − γ√
π
σ−1/2τ1/2 − 2α/2−1Γ (α/2) q

π
σ−ατ1−α/2

≡ C(C)
M τ1/2 +D

(C)
M τ1−α/2.

Finally, for N (τ) we get

N (τ) ∼ 1

π
Re

{∫ ∞
0

e−
σ2v2

2

(
1 + γτ1/2iv + τ1−α/2υ̂ (v)

)
dv

}
=

1√
2πσ

+
pτ1−α/2

π

∫ ∞
0

e−
σ2v2

2 vαdv

=
1√
2πσ

+
2α/2−1/2Γ

(
α/2 + 1

2

)
p

π
σ−(1+α)τ1−α/2

=
1√
2πσ

+ C
(C)
N τ1−α/2.

In case (D) we use the same change of variables as in case (C) and obtain the
following expressions for the relevant integrals

L (τ) ∼ 1

π
Re

{∫ ∞
0

1− eτ1−α/2υ̂(v)−σ2v2

2

v2
dv

}

=
1

π
Re

{∫ ∞
0

1− e−σ
2v2

2

v2
dv

}
− στ3/2−α/2

π
Re

{∫ ∞
0

e−
σ2v2

2 υ̂ (v)
dv

v2

}

=
1

π

∫ ∞
0

1− e−σ
2v2

2

v2
dv − σpτ3/2−α/2

π

∫ ∞
0

e−
σ2v2

2

v2−α dv

=
σ√
2π
−

2α/2−3/2Γ
(
α/2− 1

2

)
p

π
σ−(α−1)τ1−α/2

≡ σ√
2π

+ C
(D)
L τ1−α/2.

For M (τ) we get

M (τ) ∼ −τ
1−α/2

π
Im

{∫ ∞
0

e−
σ2v2

2 υ̂ (v)
dv

v

}
= −qτ

1−α/2

π

∫ ∞
0

e−
σ2v2

2 vα−1dv

= −2ω−1Γ (α/2) q

π
σ−ατ1−α/2

≡ C(D)
M τ1−α/2.
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Finally, for N (τ) we get

N (τ) ∼ 1

π
Re

{∫ ∞
0

e−
σ2v2

2 (1 + υ̂ (v)) dv

}
=

1√
2πσ

+
pτ1−α/2

π

∫ ∞
0

e−
σ2v2

2 vαdv

=
1√
2πσ

+
2α/2−1/2Γ

(
α/2 + 1

2

)
p

π
σ−(α+1)τ1−α/2

≡ 1√
2πσ

+ C
(D)
N τ1−α/2.

E.2. Normal Inverse Gaussian Processes. First we consider OTM case (k >
0). We have

CNIG (v, k) =
ω̄κ̄veκ̄2v

π

∫ ∞
k

(
e
x
2 − ek− x2

)
√
x2 + κ̄2v2

K1

(
ω̄
√
x2 + κ̄2v2

)
dx

∼ ω̄κ̄v
π

∫ ∞
k

(
e
x
2 − ek− x2

)
x

K1 (ω̄x) dx ≡ cNIG0 (k) v.

since the corresponding integral converges. Likewise,

CNIGk (v, k) = − ω̄κ̄ve
κ̄2v

π

∫ ∞
k

ek−
x
2

√
x2 + κ̄2v2

K1

(
ω̄
√
x2 + κ̄2v2

)
dx

∼ − ω̄κ̄v
π

∫ ∞
k

ek−
x
2

x
K1 (ω̄x) dx ≡ cNIG1 (k) v,

CNIGkk (v, k) =
ω̄κ̄veκ̄2ve

k
2

π
√
k2 + κ̄2v2

K1

(
ω̄
√
k2 + κ̄2v2

)
+ Ck (v, k)

∼ ω̄κ̄ve k2
πk

K1 (ω̄k) + cNIG1 (k) v ≡ cNIG2 (k) v.

It is clear that higher-order expansions can be calculated without too much effort
if required.

For the ITM case (k < 0) we can use call-put parity and study puts rather than
call. The corresponding results are similar to the OTM case.

For k = 0 the corresponding price is given by

CNIG (v, 0) =
ω̄κ̄veκ̄2v

π

∫ ∞
0

(
e
x
2 − e− x2

)
√
x2 + κ̄2v2

K1

(
ω̄
√
x2 + κ̄2v2

)
dx.

Since the integrand is potentially singular at x = 0, v = 0, we have to be more
careful than before. We split the price in two,

CNIG (v, 0) = Cε0 (v) + C∞ε (v) ,

where

Cβα (v) =
ω̄κ̄veκ̄2v

π

∫ β

α

(
e
x
2 − e− x2

)
√
x2 + κ̄2v2

K1

(
ω̄
√
x2 + κ̄2v2

)
dx.

Expansion of the integrand for small x, v yields

Cε0 (v) ∼ κ̄v
π

∫ ε

0

x

x2 + κ̄2v2
dx =

κ̄v
π

∫ ε
κ̄v

0

y

y2 + 1
dy =

κ̄v
2π

ln

(
1 +

( ε

κ̄v

)2
)

=
κ̄
π
v ln

(
1

v

)
.
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while the DCT yields
C∞ε (v) = O (v) ,

so that

CNIG (v, 0) ∼ κ̄
π
v ln

(
1

v

)
.

Next, we consider

CNIGk (v, 0) = − ω̄κ̄ve
κ̄2v

π

∫ ∞
0

e−
x
2

√
x2 + κ̄2v2

K1

(
ω̄
√
x2 + κ̄2v2

)
dx = Dε0 (v)+D∞ε (v) ,

where

Dβα (v) = − ω̄κ̄ve
κ̄2v

π

∫ β

α

e−
x
2

√
x2 + κ̄2v2

K1

(
ω̄
√
x2 + κ̄2v2

)
dx.

As before, we can show that

Dε0 (v) ∼ − κ̄v
π

∫ ε

0

1

x2 + κ̄2v2
dx = − 1

π

∫ ε
κ̄v

0

1

y2 + 1
dy = −1

2
, D∞ε (v) ∼ O (v) ,

CNIGk (v, 0) = Dε0 (v) + D∞ε (v) ∼ −1

2
.

Finally,

CNIGkk (v, 0) =
ω̄eκ̄

2v

π
K1 (ω̄κ̄v) + CNIGk (v, 0) ∼ 1

πκ̄v
.

E.3. Merton Processes. We start with the following expansion of E (τ , u):

E (τ , u) = exp

(
λτ

((
eq(iu+1/2)−η2(u2+1/4)/2 − 1

)
+ (1− eq)

(
iu+

1

2

)))
= exp

(
λτ (1− eq)

(
iu+

1

2

))
exp

(
λτ
(
eq(iu+1/2)−η2(u2+1/4)/2 − 1

))
= exp

(
λτ (1− eq)

(
iu+

1

2

))(
1 + λτ

(
eq(iu+1/2)−η2(u2+1/4)/2 − 1

)
+ ...

)
.

Accordingly, we can represent l (τ) as follows

l (τ) =
1

2π

∞∫
−∞

1− eλτ(1−eq)(iu+1/2)

u2 + 1
4

du−λτ
2π

∞∫
−∞

(
eq(iu+1/2)−η2(u2+1/4)/2 − 1

)
u2 + 1

4

du+....

As we know, the above integrals can be computed explicitly. The corresponding
calculation yields

l (τ) = 1− eλτ(1−eq)− − λτ
(

Φ

(
q

η
− η

2

)
+ eqΦ

(
− q
η
− η

2

)
− 1

)
+ ...

= −λτ
(

(1− eq)− + Φ

(
q

η
− η

2

)
+ eqΦ

(
− q
η
− η

2

)
− 1

)
+ ...

= −λτ
(

(1− eq)− + Φ

(
q

η
− η

2

)
+ eq

(
Φ

(
− q
η
− η

2

)
− 1

)
− (1− eq)

)
+ ...

= −λτ
(

(1− eq)− + Φ

(
q

η
− η

2

)
− eqΦ

(
q

η
+
η

2

)
− (1− eq)

)
+ ...

= λτ
(

(1− eq)+
+ eqCBS (η,−q)

)
+ ...,

as claimed.
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Similarly,

m (τ) =
1

2π

∞∫
−∞

eλτ(1−eq)(iu+1/2)

u2 + 1
4

iudu+
λτ

2π

∞∫
−∞

(
eq(iu+1/2)−η2(u2+1/4)/2 − 1

)
u2 + 1

4

iudu+ ...

= −1

2
sign (λτ (1− eq)) + ....

Finally,

n (τ) =
1

2π

∞∫
−∞

eλτ(1−eq)(iu+1/2)du+
λτ

2π

∞∫
−∞

(
eq(iu+1/2)−η2(u2+1/4)/2 − 1

)
du+ ...

= δ (λτ (1− eq)) + ....

E.4. Heston Stochastic Volatility Processes. We need to compute the usual
integrals l,m, n in the short-time limit τ → 0. In this limit we have

A (τ , u) = −κθ
ε2

(
F+ (u) τ + 2 ln

(
F− (u) + F+ (u) exp (−Z (u) τ)

2Z (u)

))
= −1

4
κθτ2Q (u)

(
1 +

1

3
(ρεiu− κ̂) τ − 1

24

(
2 (ρεiu− κ̂)

2 − ε2Q (u)
)
τ2 + ...

)
,

B (τ , u) =
1− exp (−Z (u) τ)

F− (u) + F+ (u) exp (−Z (u) τ)

=
1

2
τ

(
1 +

1

2
(ρεiu− κ̂) τ +

1

12

(
2 (ρεiu− κ̂)

2 − ε2Q (u)
)
τ2

+
1

24
(ρεiu− κ̂)

(
(ρεiu− κ̂)

2 − 2ε2Q (u)
)
τ3 + ...

)
,

C (τ , u) = −1

2
$0τ

(
1 +

κθ

2$0
τ

)
Q (u) + C̃ (τ , u) ,

C̃ (τ , u) = −1

4
τ2Q (u)

((
$0 +

1

3
κθτ

)
(ρεiu− κ̂)

+
1

6

(
$0 −

1

4
κθτ

)(
2 (ρεiu− κ̂)

2 − ε2Q (u)
)
τ

+
1

12
$0 (ρεiu− κ̂)

(
(ρεiu− κ̂)

2 − 2ε2Q (u)
)
τ2 + ...

)
,

E (τ , u) = e
− 1

2$0τ
(

1+ κθ
2$0

τ
)
Q(u)

eC̃(τ,u)

= e
− 1

2$0τ
(

1+ κθ
2$0

τ
)
Q(u)

+
1

4
τ2Q (u) e

− 1
2$0τ

(
1+ κθ

2$0
τ
)
Q(u)

×
(
−$0 (ρεiu− κ̂)− 1

3

(
κθ (ρεiu− κ̂) +$0

(
−2 (ρεiu− κ̂)

2
+ ε2Q (u)

))
τ

− 1

24

(
2κθ

(
(ρεiu− κ̂)

2 − 2ε2Q (u)
)
−$0 (ρεiu− κ̂)

×
(
(ρεiu− κ̂) (3$0Q (u) + 2κ̂− 2ρεiu) + 4ε2Q (u)

)
.

It is easy to see that the relevant integrals can be calculated explicitly because the
nontrivial part of the integrand is divisible by Q (u) and that the corresponding
result is given by (8.19). Moreover,
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λ1 =
1

24$0

(
6 (κθ − κ̂$0)−$2

0 −
(

1− 1

4
ρ2

)
ε2

)(E.1)

+
1

1920$2
0

(−60
(
κ2θ2 − κ̂$3

0

)
+ 3$4

0 + 20(1− 3

4
ρ2)κ̂ε2$0,

λ2 = −(1 +
88

16
ρ2 − 59

16
ρ4)ε4 − 20κθ(3$2

0 + 2κ̂$0 − 2(1− 5

8
ρ2)ε2)

+ 10$2
0(10κ̂2 − (1− 5

4
ρ2)ε2)),

µ1 =
1

24$0

(
−10κθ + 2κ̂$0 − 3$2

0 + 3

(
1− 3

4
ρ2

)
ε2

)
,

ν1 =
1

8$0

(
−2 (κθ − κ̂$0)−$2

0 +

(
1− 7

4
ρ2

)
ε2

)
,

ν2 =
1

6144$2
0

(16(36κ2θ2 + 3$4
0 + 2ε2$2

0 + 11ε4 + 12κ̂$0($2
0 + ε2) + 4κ̂2$2

0

− 4κθ(3$2
0 + 12ε2 + 10κ̂$0)) + 8ρ2ε2(198κθ +$2

0 − 89ε2 − 54κ̂$0) + 491ρ4ε4).

Expressions for χi can be derived from the the general case,

χ0,1 =
1

24$0

(
6 (κθ − κ̂$0)−

(
1− 1

4
ρ2

)
ε2

)
,(E.2)

χ1,1 =
1

24$0

(
−10κθ + 2κ̂$0 + 3

(
1− 3

4
ρ2

)
ε2

)
,

χ2,1 =
1

120$0

(
−29$4

0/ε
2 + 30

(
1− 7

2
ρ2

)
κ̂$0

+2

(
−60

(
1− 23

8
ρ2

)
κθ + 19

(
1− 679

152
ρ2 +

1883

608
ρ4

)
ε2

))
.

Their calculation is straightforward and is omitted for brevity.
As many times before, we start with the LL formula (5.11) and introduce a new

independent variable u = τ−1v. A simple calculation yields

C (τ , k) = 1− τ

2π

∫ ∞
−∞

e
(Ψ(v)−kiv)

τ +Ψ̃(τ,v)(
v2 + 1

4τ
2
) dv,

where

Ψ (v) = −$0

ε

iv

ρ+ iρ̄ coth
(
ρ̄εv
2

) ,
and Ψ̃ (τ , v) is non-singular when τ → 0. It is clear that this integral can be
analyzed via the saddlepoint approximation. The phase S (v, k) has the form

S (v, k) = −

(
$0

ρε+ iρ̄ε coth
(
ρ̄εv
2

) + k

)
iv,

so that the corresponding saddlepoint is located on the imaginary axis. Accordingly,
we can introduce u = iy and define

Ξ01 (y, k) = Ξ0 (y) + ky,
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where

Ξ0 (y) =
$0

ε

y sin (X−)

sin (X+)
,

and X± = (ρ̄εy + φ± φ) /2. Expressions for f0,Ξ1 (y) = Ξ′0 (y), Ξ2 (y) = Ξ′′0 (y),
c0 (y) can be obtained after some tedious but straightforward algebra

f0 (y) =
e
κθρεy

ε2
+
κ̂$0(sin(X−) cos(X+)− ρρ̄εy2 )

ε2ρ̄ sin2(X+)

y2
(

sin(X+)
ρ̄

)2κθ/ε2
,

Ξ1 (y) =
$0

ε

(
sin (X−) sin (X+) + 1

2 ρ̄
2εy
)

sin2 (X+)
,

Ξ2 (y) = $0ρ̄
2

(
sin (X+)− 1

2 cos (X+) ρ̄εy
)

sin3 (X+)
,

c0 (y) =
f0 (y)√
Ξ2 (y)

.

For k = −Ξ1 (y), and Ξ01 (y) = Ξ0 (y)− yΞ1 (y), to the leading order we have

(E.3) δC (τ , k) ∼ c0 (y) τ3/2 exp

(
Ξ01 (y)

τ
+
k

2

)
.

On the other hand, as we know, for τ → 0,

(E.4) δC (τ , k) ∼ τ3/2

k2
exp

(
− k2

2σ2
imp (τ , k) τ

+
k

2

)
.

Comparison of (E.3), (E.4) shows that the corresponding σimp (τ , k) can be written
in the form

σimp (τ , k (y)) = (a0 (y) + a1 (y) τ + ...)
1/2

= b0 (y) + b1 (y) τ + ...,

with a0, b0 given by (8.24), and a1, b1 of the form
(E.5)

a1 (y) =

2a2
0 (y) ln

(
k2(y)c0(y)

a
3/2
0 (y)

)
k2 (y)

=

l2 (y) ln

(
$2

0l
2(y)c0(y)

ε2a
3/2
0 (y)

)
2y2

(
sin(X−)
sin(X+) + l (y)

)2 , b1 (y) =
a1 (y)

2a0 (y)
.

Appendix F. Wing Asymptotics

F.1. Exponential Lévy Processes. First, we consider OTM asymptotics, k →
∞. In this case, in order to find the relevant asymptotics, the corresponding Fourier
integral initially defined on the real axis has to be pushed in the lower half-plane.
It is clear that there is a simple pole at u = −i/2 whose contribution is equal to
1. Assuming that the corresponding shifted Lévy exponent υ (u) is regular in the
strip −Y+ ≤ Imu ≤ 0, we obtain

(F.1) C (τ , k) ∼
k→∞

c+e
−(Y+− 1

2 )k.

Comparison of (6.5) and (F.1) yields

k

2v̂
− k

2
+
v̂k

8
=

(
Y+ −

1

2

)
k.
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It is clear that lhs and rhs terms can be balanced iff

v̂ = β+, v = β+k, σimp ∼
k→∞

√
β+k

τ
, 0 < β+ < 2,

where

1

2β+

− 1

2
+
β+

8
=

(
Y+ −

1

2

)
,

so that

β+ = 4
(
Y+ −

√
R (Y+)

)
.

A similar expression is valid for ITM case with Y+ replaced by Y−. In this case
the upper limit of regularity of the Lévy exponent is given by Imu ≤ Y−, with the
contribution of the pole u = i/2 being ek, so that

C (τ , k) ∼
k→−∞

1− ek + c−e
(Y−+ 1

2 )k.

Thus

|k|
2v̂

+
|k|
2

+
v̂ |k|

8
=

(
Y− +

1

2

)
|k| ,

v̂ = β−, v = β− |k| , σimp ∼
k→−∞

√
β− |k|
τ

, 0 < β− < 2,

1

2β−
+

1

2
+
β−
8

=

(
Y− +

1

2

)
,

β− = 4
(
Y− −

√
R (Y−)

)
.

F.2. Tempered Stable Processes. All we need to do in order to be able to apply
general formulas in the case under consideration is to establish the strip in which
the corresponding integrand is meromorphic. For TSPs it is particularly simple.
The corresponding strip is defined by the following conditions

−Y+ < Imu < Y−, Y± =

(
κ± ∓

1

2

)
Y−.

Accordingly,

σimp ∼


√

β+k

τ , β+ = −2 + 4
(
κ+ −

√
κ2

+ − κ+

)
k → +∞,√

β−|k|
τ , β− = 2 + 4

(
κ− −

√
κ2
− + κ−

)
, k → −∞.
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F.3. Normal Inverse Gaussian Processes. For deep OTM options (k → ∞)
we have

C (v, k) =
ω̄κ̄veκ̄2v

π

∫ ∞
k

(
e
x
2 − ek− x2

)
K1

(
ω̄
√
x2 + κ̄2v2

)
√
x2 + κ̄2v2

dx

=
ω̄κ̄veκ̄2v

π

∫ ∞
k

2κ̄v

(
eκ̄vy − ek−κ̄vy

)
K1

(
2ω̄κ̄vQ1/2 (y)

)
Q1/2 (y)

dy

∼
√
ω̄κ̄v
4π

eκ̄
2v

∫ ∞
k

2κ̄v

y−
3
2

(
eκ̄vy − ek−κ̄vy

)
e−2ω̄κ̄vydy

=

√
ω̄

2π
κ̄veκ̄

2v

(√
ω̄ − 1

2

∫ ∞
(ω̄− 1

2 )k
z−

3
2 e−zdz −

√
ω̄ +

1

2
ek
∫ ∞
(ω̄+ 1

2 )k
z−

3
2 e−zdz

)

∼
√

ω̄

2π
κ̄veκ̄

2v−(ω̄− 1
2 )k

(
1(

ω̄ − 1
2

)
k

3
2

− 1(
ω̄ + 1

2

)
k

3
2

)

=

√
ω̄

2πk3

v

κ̄
eκ̄

2v−(ω̄− 1
2 )k.

Thus,

C (v, k) ∼
k→∞

√
ω

2π |k|3
v

κ̄
eκ̄

2v−(ω̄− 1
2 )k.

Similarly,

C (v, k) ∼
k→−∞

1− ek +

√
ω

2π |k|3
v

κ̄
eκ̄

2v+(ω̄+ 1
2 )k.

Accordingly,

κ± = ω̄ ± 1

2
, β± = 4 (ω̄ − κ̄) ,

so that for NIG the wing volatility is symmetric

F.4. Merton Processes. As we know, the price of a call option on a MP is given
by

C (τ , k) = 1− 1

2π

∫ ∞
−∞

E (τ , u)

Q (u)
du,

where

E (τ , u) = exp

(
τ

(
−1

2
σ2Q (u) + λ

(
eq(iu+ 1

2 )− η
2

2 Q(u) − 1 + (1− eq)
(
iu+

1

2

)))
− k

(
iu− 1

2

))
.

We wish to use the saddlepoint approximation in order to evaluate the correspond-
ing integral when |k| → ∞. It is clear that this approximation cannot be applied
directly since the exponent does not have a suitable form. In order to rectify the
situation, we introduce a new independent variable v, such that

u =
v

h (k)
− ih (k) , h (k) →

k→±∞
±∞,

and notice that

Q (u) ∼ −2iv − h2, −k
(
iu− 1

2

)
∼ −kiv

h
− kh,

τ

(
−1

2
σ2Q (u) + λ

(
eq(iu+ 1

2 )− η
2

2 Q(u) − 1 + (1− eq)
(
iu+

1

2

)))
∼ λτe

η2h2

2 eη
2iv.
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Thus, if we choose h in such a way that

(F.2) e
η2h2(k)

2 =
k

h (k)
� 1,

we shall be able to balance terms, and represent the integrand (to the leading order)
in the form

exp

(
k

h (k)
S (v)− kh

)
, S (v) = λτeη

2iv − iv.

We can introduce introduce y, such that v = iy, and obtain the following expression
for S on the imaginary axis:

S (y) = λτe−η
2y + y, S′ (y) = −λτη2e−η

2y + 1.

Thus, the saddlepoint is located at

y∗ =
ln
(
λτη2

)
η2

,

and

δC (τ , k) ∼
|k|→∞

exp (−kh) .

In order to compute h, we need to solve (F.2). It can be checked that

h ∼
|k|→∞

sign (k)

η

(√
2 ln |ηk| − ln (2 ln |ηk|)

2
√

2 ln |ηk|

)
∼

|k|→∞

sign (k)
√

2 ln |k|
η

,

is the required solution, so that

δC (τ , k) ∼
|k|→∞

exp

(
−
√

2 ln |k| |k|
η

)
,

as stated.

F.5. Quadratic Volatility Processes. In order to describe the wing asymptotics
for the QV model we consider formula (5.10) in some detail. We need to analyze
the asymptotics of

c (l,K) = ζs sin (2klXK)− 2klζ
c cos (2klXK) ,

in the large and small strike limits. We start with deep OTM options and assume
that K →∞. For K →∞ and l ∼ 1 a simple but very tedious calculation yields

c (l,K) ∼
K→∞,l∼1

(−1)
l+1

kl
√
p2 + q2q.

As usual, large l are not relevant for our purposes since the corresponding expo-
nential factors decay very rapidly. Substitution of this expression in formula (5.10)
yields

C (t; τ ,K)

Ft
∼

K→∞
1 +

√
p2 + q2q

Ft (p sin (XF ) + q cos (XF ))

∞∑
l=1

(−1)
l kle

− 1
2 vR(kl)

R (kl)
sin (2klXF )

=c+,

This formula shows that, in general, in the large strike limit the value of the call
option converges to a constant. For the calibrated parameters a = 1.322, p = 0.967,



92 LEIF ANDERSEN AND ALEXANDER LIPTON

q = 0.301, we have c+ = 0.003283. Next, we consider deep ITM options and assume
that K → 0. For K → 0 and l ∼ 1, we have

c (l,K) ∼
K→0,l∼1

klKq,

so that

C (t; τ ,K)

Ft
∼

K→0
1− Kq

Ft (p sin (XF ) + q cos (XF ))

∞∑
l=1

kle
− 1

2vR(kl)

R (kl)
sin (2klXF )

=1− K

Ft
+ c−

K

Ft
.

For the calibrated set of parameters we have c− = 0.004896. These are the asymp-
totics we need.
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