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MAXIMIZING UTILITY OF CONSUMPTION SUBJECT TO A CONSTRAINT ON

THE PROBABILITY OF LIFETIME RUIN

ERHAN BAYRAKTAR AND VIRGINIA R. YOUNG

Abstract. In this note, we explicitly solve the problem of maximizing utility of consumption (until the

minimum of bankruptcy and the time of death) with a constraint on the probability of lifetime ruin, which

can be interpreted as a risk measure on the whole path of the wealth process.

1. Introduction

In our past work, we determined the optimal investment strategy of an individual who targets a

given rate of consumption and who seeks to minimize the probability of going bankrupt before she dies,

also known as lifetime ruin. For an economic justification of minimizing lifetime probability of ruin as

an investment criterion see, for example, Bayraktar and Young [2007b]. Young [2004] considered this

problem when the individual continuously consumes either a constant (real) dollar amount or a constant

proportion of wealth. Bayraktar and Young [2007b] introduced borrowing constraints. Bayraktar and

Young [2007a] established when the two problems of minimizing a function of lifetime minimumwealth and

of maximizing utility of lifetime consumption result in the same optimal investment strategy on a given

open interval in wealth space. On the other hand, Bayraktar and Young [2008] considered the case for

which the consumption is stochastic and is correlated to the wealth. By using a convex duality relationship

between the stopper and controller problems, we showed that the minimal probability of lifetime ruin in

this set up, whose stochastic representation does not have a classical form as the utility maximization

problem does, is the unique classical solution of its Hamilton-Jacobi-Bellman (HJB) equation, which is a

non-linear boundary-value problem.

When we presented our work several of our colleagues suggested that we consider the probability of

lifetime ruin as a risk constraint. Portfolio optimization problems with risk constraints on terminal wealth

were considered by Basak and Shapiro [2001] and Boyle and Tian [2007], for example. Their solution

can be obtained by pathwise maximization since the problem can formulated in terms of choosing the

terminal optimal wealth. However, the probability of lifetime ruin is a risk constraint on the entire path

of the wealth process (the constraint depends on whether the lifetime minimum reaches the bankruptcy

level before the time of death), and such an approach is not possible. Risk constraints on the entire path

of the process recently were also considered by Cheridito et al. [2005]. By using the results of Karatzas

Key words and phrases. Utility maximization from consumption, probability of lifetime ruin constraint, nonconvex risk

constraint on the entire path of the wealth process.
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et al. [1986], we will show that optimal strategies investment and consumption strategies exist and can

be numerically obtained using a bisection search.

The rest of the paper is organized as follows: In Section 2.1, we provide a precise statement of the

problem. In Section 2.2, we give sufficient conditions for optimality and relate the problem to an uncon-

strained optimization problem (Lemma 2.1), which was analyzed by Karatzas et al. [1986]. In Section

3.1, we summarize the results of Karatzas et al. [1986] that we need to prove our main result. In Sec-

tion 3.2, we prove our main result, Theorem 3.1, with the help of the auxiliary results Lemmas 3.3-3.5.

These results point out that a bisection search can be carried out to determine an optimal policy (see

Remark 3.3).

2. Maximizing Utility of Consumption Subject to a Probability of Ruin Constraint

In Section 2.1, we present the financial market and define the problem of maximizing expected utility

of lifetime consumption subject to a constraint on the probability of lifetime ruin. In Section 2.2, we

show that the method of Lagrange multipliers allows us to apply the work of Karatzas et al. [1986] to

solve this problem.

2.1. Statement of the Problem. In this section, we first present the financial ingredients that make

up the agent’s wealth, namely, consumption, a riskless asset, and a risky asset. We, then, define the

problem of maximizing utility of consumption subject to a constraint on the ruin probability. We assume

that the individual invests in a riskless asset whose price S0
t at time t follows the process dS0

t = r S0
t dt,

for some fixed rate of interest r > 0. Also, the individual invests in a risky asset whose price at time t,

St, follows geometric Brownian motion given by

(2.1) dSt = µSt dt+ σ St dZt,

in which µ > r, σ > 0, and Z is a standard Brownian motion with respect to a filtered probability

space (Ω,F ,P, {Ft}t≥0). Let Xt denote the wealth at time t of the investor. We allow him to specify

a consumption process {ct}t≥0 and an investment strategy {πt}t≥0, in which ct denotes the rate of

consumption and πt denotes the dollar amount invested in the risky asset at time t. (We will consider

admissible consumption and investment pairs {ct, πt}t≥0 such that {ct}t≥0 is a non-negative process

adapted to {F}t≥0 and satisfies
∫ t

0 csds <∞ almost surely for all t ≥ 0, and such that {πt}t≥0 is adapted

to {F}t≥0 and satisfies
∫ t

0 π
2
s ds <∞ almost surely for all t ≥ 0.) The remaining wealth, namely Xt −πt,

is invested in the riskless asset. Thus, wealth follows the process

(2.2) dXt = [rXt + (µ− r)πt − ct] dt+ σ πt dZt, X0 = x,

We assume that the investor chooses admissible consumption and investment strategies to maximize

his expected utility of consumption before he dies or before he bankrupts, whichever occurs first. Let U

denote a strictly increasing, strictly concave utility function on (0,∞) whose first three derivatives are

continuous; we extend U to [0,∞) by defining U(0) = limc↓0 U(c); similarly, for U ′(0). Let τd denote the

random time of death of the investor. We assume that τd is exponentially distributed with parameter

β > 0 (that is, with expected time of death equal to 1/β); this parameter is also known as the hazard rate
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of the investor. We assume that τd is independent of the Brownian motion Z driving the price process of

the risky asset.

The investor is subject to a constraint on the probability of bankruptcy, or ruin, before he dies. Let

τ0 denote the first time that wealth equals 0; that is, τ0 = inf{t ≥ 0 : Xt = 0}. τ0 is the time of ruin

or bankruptcy. For notational completeness, we should write τ
{ct,πt}
0 to indicate the dependence of τ0 on

the consumption and investment strategies. However, for simplicity, we will write τ0, if the consumption

and investment strategies are understood by the context.

Thus, the investor chooses admissible {ct}t≥0 and {πt}t≥0 to maximize

(2.3) W{ct,πt}(x) := E
x

[
∫ τ0∧τd

0
U(ct) dt

]

,

subject to the constraint

(2.4) ψ(x) := P
x(τ0 < τd) ≤ ϕ(x).

Here, ϕ(x) is a given threshold of tolerance for the probability of lifetime ruin. We assume that ϕ(x) is

less than or equal to the probability of ruin when the individual maximizes (2.3) without any constraint

on the probability of ruin. E
x and P

x denote the expectation and probability, respectively, conditional

on X0 = x.

Remark 2.1. Note that because τd ∼ Exp(β) is independent of the Brownian motion driving the price

process of the risky asset, we can express W{ct,πt} as follows.

W{ct,πt}(x) = E
x

[
∫ τd

0
U(ct)1{t≤τ0} dt

]

= E
x

[
∫ ∞

0
βe−βs

∫ s

0
U(ct)1{t≤τ0} dt ds

]

= E
x

[
∫ ∞

0
U(ct)1{t≤τ0}

∫ ∞

t

βe−βs ds dt

]

= E
x

[
∫ ∞

0
e−βt U(ct)1{t≤τ0} dt

]

= E
x

[
∫ τ0

0
e−βt U(ct) dt

]

.

(2.5)

Similarly, we can rewrite the ruin probability in (2.4) as follows:

ψ(x) = E
x

[
∫ ∞

0
1{τ0≤t} βe

−βt dt

]

= E
x

[
∫ ∞

τ0

1{τ0<∞} βe
−βt dt

]

= E
x
[

e−βτ01{τ0<∞}

]

= E
x
[

e−βτ0
]

.

(2.6)

Remark 2.2. To ensure that maximizing (2.3) subject to (2.4) results in a finite value function, we make

the following assumption concerning the utility function U . Define the positive constant γ by

(2.7) γ =
1

2

(

µ− r

σ

)2

,

and let λ− < −1 and λ+ > 0 denote the solutions of

(2.8) γλ2 − (r − β − γ)λ− r = 0.

We assume that

(2.9)

∫ ∞

c

dθ

(U ′(θ))λ−
<∞,
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for all c > 0.

2.2. Sufficient Conditions for Optimality. For any real number P and admissible strategy {ct, πt}t≥0,

define

(2.10) V{ct,πt}(x;P ) = E
x

[
∫ τ0

0
e−βtU(ct)dt+ Pe−βτ0

]

.

Lemma 2.1. For a fixed x > 0, assume that there exists an admissible strategy {c∗t , π
∗
t }t≥0 such that

(2.11) P
x
(

τ
{c∗t ,π

∗
t }

0 ≤ τd

)

= ϕ(x),

and assume that there exists a constant P ≤ 0 such that {c∗t , π
∗
t }t≥0 solves

(2.12) V ∗(x;P ) := sup
{ct,πt}

V{ct,πt}(x;P ) = V{c∗t ,π∗
t }
(x;P ).

Then, for any admissible strategy {ct, πt}t≥0 satisfying P
x
(

τ
{ct,πt}
0 ≤ τd

)

≤ ϕ(x), we have that

(2.13) E
x

[

∫ τ
{ct,πt}
0

0
e−βt U(ct) dt

]

≤ E
x





∫ τ
{c∗t ,π

∗
t }

0

0
e−βt U(ct) dt



 .

Proof. By assumption

(2.14) E
x

[

∫ τ
{ct,πt}
0

0
e−βt U(ct) dt+ Pe−βτ

{ct,πt}
0

]

≤ E
x





∫ τ
{c∗t ,π

∗
t }

0

0
e−βt U(ct) dt+ Pe−βτ

{c∗t ,π
∗
t }

0



 .

On the other hand, again from our assumption, Ex

[

e−βτ
{c∗t ,π

∗
t }

0

]

= ϕ(x) ≥ E
x
[

e−βτ
{ct,πt}
0

]

for any

admissible {ct, πt}t≥0. Using this last inequality in (2.14) yields the result.

Note that the expressions for V{ct,πt} in (2.10) and V ∗ in (2.12) are identical to the corresponding

expressions in (1.6) and (2.7) in Karatzas et al. [1986]. Thanks to the results of that paper, we will be

able to identify P , {c∗t }t≥0, and {π∗t }t≥0 satisfying the assumptions of Lemma 2.1.

3. Main Result

In this section, we will first describe how to obtain V ∗ for a given real number P using the results

presented in Karatzas et al. [1986]. Then, we will give our main result and show the existence of P ,

{c∗t }t≥0, and {π∗t }t≥0. We will also describe how these can be numerically computed efficiently.

3.1. Solution of the Unconstrained Optimization Problem in (2.12). Karatzas et al. (1986; The-

orem 4.1 and Remark 4.2) prove the following verification theorem concerning V ∗:

Lemma 3.1. For P finite, suppose V : (0,∞) → (P,∞) is a C2 function satisfying the Hamilton-Jacobi-

Bellman (HJB) equation

(3.1) βV (x) = rxV ′(x) + max
c≥0

(

U(c)− cV ′(x)
)

+max
π

(

(µ− r)πV ′(x) +
1

2
σ2π2V ′′(x)

)

.

(a) If U(0) is finite, then V (x) ≥ V ∗(x) for x > 0.
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(b) If U(0) = −∞ and if Ex
[∫ τ0

0 e−βtmax(0, U(ct)) dt
]

< ∞ for all admissible strategies, then V (x) ≥

V ∗(x) for x > 0.

When the non-negativity constraint on consumption is not active, then Karatzas et al. [1986] (Sections

6 through 12) use consumption as an intermediate variable to solve the HJB equation (3.1). When the

non-negativity constraint on consumption is active, then in Section 13, they use y = (V ∗)′(x) as an

intermediate, or dual, variable. We shall follow the latter approach in both cases and thereby unify our

presentation of the results of Karatzas et al. [1986].

Define the function I : (0, U ′(0)] → [0,∞) to be the inverse of U ′. Extend I to (0,∞) by setting I ≡ 0

on [U ′(0),∞). If V is C2 and strictly concave, then the HJB equation (3.1) becomes

(3.2) βV (x) =
[

rx− I(V ′(x))
]

V ′(x) + U(I(V ′(x)))− γ
(V ′(x))2

V ′′(x)
, x > 0.

Let ρ− < 0 and ρ+ > 1 denote the solutions of

(3.3) γρ2 − (r − β + γ)ρ− r = 0.

Note that ρ± = 1 + λ±. For a ≥ 0, B ≤ 0, and A ≤ 0, define the following functions for 0 < y < U ′(a).

X (y; a,B) = Byλ+ +
I(y)

r
−

1

γ(λ+ − λ−)

{

yλ+

λ+

∫ I(y)

a

dθ

(U ′(θ))λ+
+
yλ−

λ−

∫ ∞

I(y)

dθ

(U ′(θ))λ−

}

,(3.4)

and

J (y; a,A) = Ayρ+ +
U(I(y))

β
−

1

γ(λ+ − λ−)

{

yρ+

ρ+

∫ I(y)

a

dθ

(U ′(θ))λ+
+
yρ−

ρ−

∫ ∞

I(y)

dθ

(U ′(θ))λ−

}

.(3.5)

Now, X is strictly decreasing, and limy↓0 X (y; a,B) = ∞. Define X (U ′(a); a,B) = limy↑U ′(a) X (y; a,B).

Thus, X (·; a,B) maps (0, U ′(a)] onto [X (U ′(a); a,B),∞), and its inverse function Y(·; a,B) is C2, strictly

decreasing, and maps [X (U ′(a); a,B),∞) onto (0, U ′(a)].

When U(0) and U ′(0) are finite, and when

(3.6)
1

β
U(0) ≤ P < P ∗ :=

1

β
U(0) −

(U ′(0))ρ−

βλ−

∫ ∞

0

dθ

(U ′(θ))λ−
,

we set a = 0 and extend the definition of X and J to all y > 0. In this case, X is strictly decreasing for

all y > 0, and limy→∞ X (y; 0, B) = limy→∞Byλ+ . If P = U(0)/β, then set B = 0, so X (·; 0, B) maps

(0,∞) onto (0,∞) and has surjective inverse Y(·; 0, B) : (0,∞) → (0,∞). If U(0)/β < P < P ∗, then set

(3.7) B(P ) = −
β

γ(λ+ − λ−)[y(P )]ρ+

(

P −
1

β
U(0)

)

,

in which y(P ) is defined by

(3.8) [y(P )]ρ− = −βλ−

(

P −
1

β
U(0)

)[
∫ ∞

0

dθ

(U ′(θ))λ−

]−1

.

It follows that I(y) = 0 and X (y; 0, B) = 0. We consider X (·; 0, B) restricted to (0, y], which has range

[0,∞) and surjective inverse Y(·; 0, B) : [0,∞) → (0, y].
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Define V by

(3.9) V (x; a,B) = J

(

Y(x; a,B); a,
λ+
ρ+

B

)

,

with the domain of V given by the domain of Y. Define candidate optimal consumption and investment

strategies in feedback form by

(3.10) ct = I(V ′(Xt; a,B)), πt = −
µ− r

σ2
V ′(Xt; a,B)

V ′′(Xt; a,B)
.

After these preliminaries, we are ready to give V ∗(x;P ) in terms of V (x; a,B) the optimal consumption

and investment strategies by specifying the values of a and B in (3.9) and (3.13) case by case; see Table 1

on page 292 of Karatzas et al. [1986]. First, we dispense with the case for which P ≥ limc→∞U(c)/β. In

this case, it is optimal to consume all of one’s wealth immediately to bankruptcy; no continuous optimal

consumption strategy exists.

Lemma 3.2. Depending on the utility function and its derivative at zero, the value function V ∗(x;P )

can be computed in terms of V (x; a,B) as follows:

(i) When P ≤ U(0)/β, V ∗(x;P ) = V (x; 0, 0). Note that V (x; 0, 0) is independent of P .

(ii) When U ′(0) = ∞ and U(0)/β < P < limc→∞U(c)/β, V ∗(x;P ) = V (x, a(P ), B(P )), in which

given P , a(P ) is the unique positive root of the strictly decreasing function

(3.11) F (c) = ρ+P −
(U ′(c))ρ−

γλ−ρ−

∫ ∞

c

dθ

(U ′(θ))λ−
−
ρ+
β
U(c) +

λ+
r
cU ′(c),

and B(P ) is defined by

(3.12) B(P ) · (U ′(a))λ+ +
a

r
−

(U ′(a))λ−

γλ−(λ+ − λ−)

∫ ∞

a

dθ

(U ′(θ))λ−
= 0.

(iii) When U ′(0) finite and U(0)/β < P < P ∗, V ∗(x;P ) = V (x; 0, B(P )), in which B(P ) is given by

(3.7).

(iv) U ′(0) finite and P = P ∗, V ∗(x;P ) = V (x; 0, B(P )), in which B(P ) is given by (3.12).

(v) U ′(0) finite and P ∗ < P < limc→∞U(c)/β, V ∗(x;P ) = V (x, a(P ), B(P )), in which a(P ) and

B(P ) are as in Case ii.

The strategy

(3.13) cPt = I((V ∗)′(Xt;P )), πPt = −
µ− r

σ2
(V ∗)′(Xt;P )

(V ∗)′′(Xt;P )
,

satisfies

(3.14) V{cPt ,πP
t }(x;P ) = V ∗(x;P ).

Except for Case iii, the non-negativity constraint on the rate of consumption is not active. For Case

iii, the optimal rate of consumption is 0 for wealth between 0 and x and positive for wealth greater than

x, in which x = X (U ′(0); 0, B(P )) with B(P ) given by (3.7).
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3.2. Probability of Lifetime Ruin. Define a process {Yt}t≥0 by Yt := (V ∗)′(Xt), in which V ∗ is given

in Lemma 3.2. Karatzas et al. [1986] show that bankruptcy occurs when the process {Yt}t≥0 hits y(P ),

in which y(P ) is given by (3.8) for Case iii and equals U ′(a(P )) for the remaining cases; see Remarks 7.1

and 13.3 in that article. Note that U ′(a) might be infinite, in which case the probability of bankruptcy

is 0.

Karatzas et al. [1986] show that the process {Yt}t≥0 follows geometric Brownian motion. Specifically,

(3.15) dYt = −(r − β)Yt dt−
µ− r

σ
Yt dZt.

Recall from (2.6) that the probability of lifetime ruin equals ψ(x) = E
x(e−βτ0). Thus, for y(P ) satisfying

X (y; a(P ), B(P )) = x (or y(P ) = (V ∗)′(x;P )), the probability of lifetime ruin is ψ(x) = ψ̂(y(P )) in which

ψ̂(y) solves

β ψ̂(y) = −(r − β) y ψ̂′(y) + γ y2 ψ̂′′(y), 0 ≤ y ≤ y(P );

ψ̂(y(P )) = 1.
(3.16)

From (3.16), it is straightforward to prove the following result.

Lemma 3.3. The probability of lifetime ruin ψ is given by ψ(x) = ψ̂(y), with y satisfying X (y; a,B) = x,

in which ψ̂ equals

(3.17) ψ̂(y;P ) = (y(P )/y(P ))ρ+ , y ∈ [0, y(P )].

Recall that ρ+ > 1 is the positive root of (3.3).

Remark 3.1. y = ∞ in Case i in Lemma 3.2. When P ≤ U(0)/β, then the probability of bankruptcy,

P
x(τ0 < ∞), is zero ( see Remarks 7.1 and 13.3 in Karatzas et al. [1986]), and therefore the probability

of lifetime ruin, Px(τ0 < τd), is also equal to zero.

Now, given a threshold ϕ for the probability of lifetime ruin, we wish to determine a corresponding

Lagrange multiplier P in (2.10). Then, by the solution of (2.12) given in Lemma 3.2, we have the

corresponding optimal investment and consumption strategies, as stated there.

First, we show that the probability of lifetime ruin in (3.17) is increasing with respect to P .

Lemma 3.4. As a function of the penalty P ∈ [U(0)/β, limc→∞U(c)/β], the probability of lifetime ruin ψ̂

is increasing. Moreover, when P = U(0)/β, the probability of lifetime ruin equals 0, and as P approaches

limc→∞U(c)/β, the probability of lifetime ruin approaches 1.

Proof. The limiting values of the probability with respect to P follow from Remark 3.1 and the discussion

preceding Lemma 3.2. Next, let P1 < P2; we wish to show that Ex(e−βτ0) under the optimal consumption

and investment strategy {c
(1)
t , π

(1)
t } corresponding to P1 is less than or equal to E

x(e−βτ0) under the

optimal consumption and investment strategy {c
(2)
t , π

(2)
t } corresponding to P2. From the optimality of

{c
(2)
t , π

(2)
t } for P2, we have

(3.18)

E
x







∫ τ
{c

(1)
t

,π
(1)
t

}

0

0
e−βt U(c

(1)
t ) dt+ e−βτ

{c
(1)
t

,π
(1)
t

}

0 P2






≤ E

x







∫ τ
{c

(2)
t

,π
(2)
t

}

0

0
e−βt U(c

(2)
t ) dt+ e−βτ

{c
(2)
t

,π
(2)
t

}

0 P2






,
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and we can rewrite this inequality as

E
x







∫ τ
{c

(1)
t

,π
(1)
t

}

0

0
e−βt U(c

(1)
t ) dt+ e−βτ

{c
(1)
t

,π
(1)
t

}

0 P1 + e−βτ
{c

(1)
t

,π
(1)
t

}

0 (P2 − P1)







≤ E
x







∫ τ
{c

(2)
t

,π
(2)
t

}

0

0
e−βt U(c

(2)
t ) dt+ e−βτ

{c
(2)
t

,π
(2)
t

}

0 P1 + e−βτ
{c

(2)
t

,π
(2)
t

}

0 (P2 − P1)






.

(3.19)

On the other hand, from the optimality of {c
(1)
t , π

(1)
t } for P1, we have

(3.20)

E
x







∫ τ
{c

(2)
t

,π
(2)
t

}

0

0
e−βt U(c

(2)
t ) dt+ e−βτ

{c
(2)
t

,π
(2)
t

}

0 P1






≤ E

x







∫ τ
{c

(1)
t

,π
(1)
t

}

0

0
e−βt U(c

(1)
t ) dt+ e−βτ

{c
(1)
t

,π
(1)
t

}

0 P1






.

From (3.19) and (3.20), it follows that

(3.21) E
x

[

e−βτ
{c

(1)
t

,π
(1)
t

}

0

]

≤ E
x

[

e−βτ
{c

(2)
t

,π
(2)
t

}

0

]

,

which is what we wished to show.

Remark 3.2. Note that if P = 0, then the probability of lifetime ruin corresponding to V ∗ in (2.12) equals

the probability of ruin when we maximize W in (2.3) without the constraint in (2.4). Therefore, P = 0

attains the maximum allowable value for the threshold ϕ(x), namely, the probability of ruin when the

individual maximizes W without any constraint on the probability of ruin.

Lemma 3.5. The probability of lifetime ruin defined in (3.17) is a continuously differentiable function of

P .

Proof. To show that ψ̂ is a continuously differentiable implicit function of P , we will need to deter-

mine that (given x) y and y are continuously differentiable functions of P . Note that y is a solution

X (y; a(P ), B(P )) = x (for proper values of a and B, whose choice depends on the value function U as

described by Lemma 3.2). Since X (·; a,B) is strictly decreasing and continuously differentiable, the im-

plicit function theorem implies that y is a continuously differentiable function of P . On the other hand,

y is either given by (3.8), by U ′(a), in which a is the unique root of the strictly decreasing function F

in (3.11), or by U ′(0). One only needs to prove that U ′(a) is a continuously differentiable function of

P . But, this result again follows from the implicit function theorem thanks to the fact that F is strictly

decreasing and differentiable.

Theorem 3.1. For a given wealth x > 0, there exists a constant P ≤ 0 such that the strategy {cPt , π
P
t }t≥0,

defined by (3.13), maximizes expected utility of consumption (2.3) subject to the probability of ruin con-

straint (2.4).

Proof. Let U(0)/β ≥ 0. Recall that if P ≤ U(0)/β in (2.12), ruin is impossible under the optimal strategy.

Therefore, from Remark 3.2, we can choose P = 0.
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Now, let U(0)/β < 0. Thanks to Lemmas 3.4 and 3.5 and to Remark 3.2, for a fixed x > 0, we can

determine a P ≤ 0 satisfying P
x
(

τ
{cPt ,πP }
0 ≤ τd

)

= ϕ(x) ∈ [0, 1]. The result follows now from Lemmas

2.1 and 3.2.

Remark 3.3. It follow from Lemmas 3.4 and 3.5 that for a given x > 0, the constant P in Theorem 3.1

can be computed by bisection search using (3.17) along with X (y; a,B) = x and the expression for y

described in Lemma 3.2.
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