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Abstract

We develop algorithms for the numerical computation of the quadratic hedging strategy
in incomplete markets modeled by pure jump Markov process. Using the Hamilton-Jacobi-
Bellman approach, the value function of the quadratic hedging problem can be related to
a triangular system of parabolic partial integro-differential equations (PIDE), which can be
shown to possess unique smooth solutions in our setting. The first equation is non-linear, but
does not depend on the pay-off of the option to hedge (the pure investment problem), while
the other two equations are linear. We propose convergent finite difference schemes for the
numerical solution of these PIDEs and illustrate our results with an application to electricity
markets, where time-inhomogeneous pure jump Markov processes appear in a natural manner.

Key words: Quadratic hedging, Hamilton-Jacobi-Bellman equation, Markov jump processes, Par-
tial integro-differential equation, Hölder spaces, electricity markets, discretization schemes for
PIDE.

1 Introduction

In an incomplete market setting, where exact replication of contingent claims is not possible,
quadratic hedging is the most common approach, among both academics and practitioners. This
method consists in minimizing the L2 distance between the hedging portfolio and the claim. Its
popularity is due to the fact that the strategy is linear with respect to the claim, and is relatively
easy to compute in a variety of settings.

In its most general form, the quadratic hedging problem can be formulated as follows. Consider
a random variable H ∈ L2 (FT ,P) (which stands for the option one wants to hedge) and a set of
admissible strategies, which has to be carefully specified, θ ∈ X , where X is a subset of adapted
processes with caglad paths. The quadratic hedging problem becomes

minimize EP

(x+

∫ T

0

θtdSt −H

)2
 over x ∈ R and θ ∈ X (1.1)

where S is a semimartingale modeling the stock price. If (x∗, θ∗) is a minimizer, we call θ∗ the opti-
mal mean-variance hedging strategy and x∗ its price. This problem has been extensively studied in
the literature, starting with the seminal works of Föllmer and Sondermann (1986) and Föllmer and
Schweizer (1991) and until the complete theoretical solution in the general semimartingale setting
was given in Černỳ and Kallsen (2007). The case when S is a P-square integrable martingale is
particularly simple and can be solved using the well known Galtchouk-Kunita-Watanabe decom-
position. The general case is much more involved, and has only been solved in Černỳ and Kallsen
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(2007) by means of introducing a specific non martingale change of measure (the opportunity
neutral measure).

The problem of numerical computation of the hedging strategy is an important issue in its
own right, since various objects appearing in the theoretical solution (opportunity neutral mea-
sure, Galtchouk-Kunita-Watanabe decomposition, Föllmer-Schweizer decomposition) are often not
known in explicit form. When the underlying asset is modeled by a Lévy process, a complete semi-
explicit solution was obtained in Hubalek et al. (2006) using Fourier methods. Their approach was
extended to additive processes in Goutte et al. (2011). Laurent and Pham (1999) and Heath et al.
(2001) characterize the optimal strategy via an HJB equation in continuous Markovian stochastic
volatility models while Černỳ and Kallsen (2008) and Kallsen and Vierthauer (2009) treat affine
stochastic volatility models using Fourier methods.

In this paper, we propose algorithms for the numerical computation of the quadratic hedging
strategy in general Markovian models with jumps. We first review the HJB characterization of the
value function, obtained in De Franco (2012). We only give a brief review, referring the readers
to De Franco (2012) for full details and proofs because in this paper, we are interested in the
numerical schemes for the computation of the hedging strategies and in applications to electricity
markets. The value function of the quadratic hedging problem can be related to a triangular
system of parabolic partial PIDEs, which can be shown to possess unique smooth solutions in our
setting. The first equation is a non-linear PIDE of HJB type, but does not depend on the pay-off
of the option to hedge (the pure investment problem), while the other two equations are linear.
We next propose two finite difference schemes for the numerical solution of the linear and the
nonlinear PIDEs, which are shown to converge to the unique solutions. For the numerical schemes,
we concentrate on the infinite variation case which is more relevant in applications.

Our main motivation comes from hedging problems in electricity markets. These markets are
structurally incomplete and often illiquid, owing to a relatively small number of market participants
and the particular nature of electricity, which is a non-storable commodity. As pointed out in
Geman and Roncoroni (2006) and Meyer-Brandis and Tankov (2008), due to these features, the
electricity prices exhibit highly non-Gaussian behavior with jumps and spikes (upward movements
followed by quick return to the initial level) and several authors have therefore suggested to model
electricity prices by pure jump processes Benth et al. (2007); Deng and Jiang (2005).

On the other hand, since the spot electricity is non storable, the main hedging instruments in
electricity markets are futures. A typical future contract with maturity T and duration d guar-
antees to its holder continuous delivery of electricity during the period [T, T + d]. Maturities,
durations and amounts of electricity are standardized for listed contracts. This continuous delivery
feature implies that even if the spot electricity follows a simple model, such as the exponential
of a Lévy process, the price of the future contract will be a general Markov process with jumps,
non-homogeneous in time and space.1 Therefore, Fourier methods such as the ones developed in
Hubalek et al. (2006) and Goutte et al. (2011) cannot be applied in this setting. For this reason,
in Section 5, after introducing a model for the futures prices, where the spot price is described
by the exponential of the Normal Inverse Gaussian (NIG) process, we derive the associated HJB
equations and use the finite difference schemes to compute the hedging strategies and analyze their
behavior. The numerical results illustrate the performance of our method and show in particular
that the computation of the hedging strategies under the true historical probability (as opposed
to the martingale probability, which does not require solving non-linear HJB equations) leads to a
considerable improvement in the efficiency of the hedge.

The paper is structured as follows. After introducing the model and the quadratic hedging
problem in Section 2, we review the HJB characterization of the solution and the regularity results
in Section 3. The finite difference schemes for the solution of the HJB equations, which are the main
results of this paper, are presented in Section 4. In Section 5 these results are applied to a concrete
hedging problem in electricity markets. The proofs of the convergence results are postponed to
Section 6.

1If a single delivery length is fixed, it is possible to model the future price directly as the exponential of a process
with independent increments, as in Goutte et al. (2011). However this approach does not allow to treat problems
involving futures of different durations, say, hedging a product with specified duration with the listed contracts.
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2 The model and the quadratic hedging problem

Let J be a Poisson random measure on [0,+∞) × R defined on a filtered probability space
(Ω,F ,Ft,P), Ft being the natural filtration of J . We suppose that F0 contains the null sets and
also F = FT where T > 0 is given. Let also dt × ν (dy) be the intensity measure of J where ν
satisfies the standard integrability condition

∫
R
(
1 ∧ |y|2

)
ν (dy) <∞. We denote

J̃(dt× dy) := J(dt× dy)− dt× ν(dy)

the compensated martingale jump measure. On this probability space we introduce the family of
R-valued Markov pure jump process as the solution of the following:

dZt,zr :=µ
(
r, Zt,zr

)
dr +

∫
R
γ
(
r, Zt,zr−, y

)
J̃ (dr × dy) , Zt,zt = z (2.1)

for t ∈ [0, T ) and z ∈ R. The stock price process S is given by St,zu = exp(Zt,zu ). We make the
following assumptions:

Assumption 2.1.
[C]- The coefficients.

i). There exists µ ≥ 0 such that ‖µ‖∞ ≤ µ.

ii). For all t ∈ [0, T ] and y ∈ R the functions z → µ(t, z) and z → γ(t, z, y) belong to C1(R,R).

iii). There exist Kc
lip ≥ 0, Kd

lip ≥ 0 and a positive locally bounded function ρ : R→ R+ such that
for all y ∈ R and all t ∈ [0, T ] we have

|µ(t, z)− µ(t, z′)| ≤ Kc
lip|z − z′|

|γ(t, z, y)− γ(t, z′, y)| ≤ Kd
lipρ(y)|z − z′|

[L]- The Lévy measure. The Lévy measures ν(dy) verifies ν(dy) = ν(y)dy where ν(y) :=

g(y)|y|−(1+α) for some α ∈ (1, 2), where g is a measurable function verifying 0 < mg ≤ g(y) ≤
Mg, ∀y ∈ R, for some positive constants mg,Mg. We also assume that

lim
y→0−

g(y) = g(0−) and lim
y→0+

g(y) = g(0+) with g(0+), g(0−) > 0.

[I]- Integrability conditions. The function

τ (y) := max

(
sup
t,z

(
|γ (t, z, y) |, e|γ(t,z,y)| − 1

)
, ρ(y)

)
verifies, for some y0 ∈ (0, 1)

sup
0<|y|≤y0

τ(y)

|y|
≤M and τ ∈ L4({|y| ≥ y0}, ν(dy))

[ND]- No degeneracy. The function

Γ(y) := inf
t,z

(
eγ(t,z,y) − 1

)2

verifies |Γ| :=
∫
R

Γ2(y)ν(dy) > 0

[RG]- Regularity of the γ function.

i). For any t, z the mapping y → γ(t, z, y) is twice continuously differentiable around zero and
there exists two positive constants m1,m2 such that

0 < m1 ≤ inf
t,z,|y|≤y0

|γy(t, z, y)|and sup
t,z,|y|≤y0

|γyy(t, z, y)| ≤ m2

In particular γ is invertible in (−y0, y0): we call γ−1(t, z, y) its inverse.
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ii). For all t, z ∈ [0, T )× R γy(t, z, 0) = 1

iii). The function γy is Lipschitz continuous in the variable z:

sup
t,z,|y|≤y0

|γy(t, z + h, y)− γy(t, z, y)| ≤ m2|h|

We denote Kmax := max(Kc
lip, K

d
lip),

µ̃ :=µ+

∫
R

(eγ − 1− γ)ν(dy) and ‖µ̃‖ := sup
t,z
|µ̃(t, z)| (2.2)

In the rest of the paper we denote ‖τ‖1,ν :=
∫
|y|≥1

τ(y)ν(dy) whereas ‖τ‖22,ν :=
∫
R τ

2(y)ν(dy).

It is well known that there exists a unique semimartingale Z which solves the SDE defined above
(Jacod and Shiryaev, 2003). Among the assumptions listed above, undoubtedly [RG] − ii) seems
to be the most restrictive one: if for example the jump function is of the form γ(t, z, y) = γ̂(t, z)y
then the only possible choice would be γ̂(t, z) = 1 for all t, z. However it can be relaxed: if the
original process Z does not satisfy this assumption, it is possible to make a change of variable
Z ′t = φ(t, Zt), with an appropriately chosen φ, so that the jump function corresponding to Z ′ will
verify the above assumptions. We refer to Chapter 7 in De Franco (2012) for further details.

To describe the set of admissible strategies in the quadratic hedging problem we follow the
ideas developed in Černỳ and Kallsen (2007): we first introduce the sets of simple strategies:

D :=

{
θ :=

∑
i

Yi1[ςi,ςi+1
), Yi ∈ L∞(Fςi), ςi ≤ ςi+1 stopping times

}
Dt :=

{
θ1(t,T ] | θ ∈ D

}
(2.3)

The set of admissible strategies is a subset of the L2(P)-closure of D:

X :=

{
θ ∈ D̄ :

∫
θdS ∈ L2(P)

}
(2.4)

We define the wealth process for all t, z, x simply by

dXt,z,x,θ
r := θr−dS

t,z
r , Xt,z,x,θ

t := x (2.5)

where θ represents the number of shares in the portfolio at time t. The set of admissible controls
is then given by

X (t, z, x) :=

{
θ1(t,T ] | θ ∈ X x+

∫ .

t

θr−dS
t,z
r ∈ L2(P)

}
(2.6)

Consider a European option of the form f (ZT ) where f is, for the moment, a bounded and
measurable function. The quadratic hedging problem can be formulated as follows:

QH : minimize EP
[(
f
(
Z0,z
T

)
−X0,z,x,θ

T

)2
]

over θ ∈ X (0, z, x)

The dynamic version of QH gives us the value function of the problem:

vf (t, z, x) := inf
θ∈X (t,z,x)

EP
[(
f
(
Zt,zT

)
−Xt,z,x,θ

T

)2
]

(2.7)

vf (T, z, x) = (f (z)− x)
2

As remarked by several authors, the function vf has the following structure

vf (t, z, x) = a(t, z)x2 + b(t, z)x+ c(t, z) (2.8)
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In particular, by taking f = 0, one has

v0 (t, z, x) := x2 inf
θ∈X (t,z,x)

E

(1 +

∫ T

t

θr−dS
t,z
r

)2
 (2.9)

because the set X (t, z, x) is a cone. Consequently

a (t, z) := inf
θ∈X (t,z,1)

E

(1 +

∫ T

t

θr−dS
t,z
r

)2
 (2.10)

This problem is known in the literature as the pure investment problem. In its dual form the
function a corresponds to the optimal martingale change of measure (Černỳ and Kallsen, 2007).
We recall here some fundamental properties on the function a, whose proof can be found in Chapter
5 of De Franco (2012).

Theorem 2.2. Under Assumptions 2.1-[C, I,ND] the function a verifies

e−C(T−t) ≤ a (t, z) ≤ 1 where C :=
‖µ̃‖2

|Γ|
Furthermore, there exists T ∗ > 0 and Ka

lip ≥ 0 such that if T < T ∗ then

|a(t, z′)− a(t, z)| ≤ Ka
lip|z − z′|

for all t ∈ [0, T ] and z, z′ ∈ R. T ∗ depends on µ, τ, C and Kmax defined in Assumptions 2.1.
Moreover T ∗ → +∞ when Kmax → 0 and the other constants remain fixed.

Remark that these results hold true without assuming any particular structure of the Lévy
measure ν(dy). The next goal is to characterize the functions a, b and c as the solutions of some
partial integro-differential equations (PIDEs).

3 HJB formulation and main regularity results

Remarks on notation For a function f : [0, T ]×R→ R we denote ‖f‖∞ := supt≤T,x∈R |f(t, x)|.
M, M1, M2, · · · denote positive constants which may change from line to line. For a function ϕ
defined on [0, T ]×R and k ∈ N we denote Dkϕ := ∂kϕ/∂kx whereas ∂tϕ denotes the derivative in
the time variable. We adopt the following convention: for any l ∈ R+

l = blc+ {l}−, where {l}− ∈ [0, 1)

l = dle+ {l}+, where {l}+ ∈ (0, 1]

Let us first introduce the functional spaces in which we will work: for β ∈ (0, 1] we define

〈ψ〉(β) := sup
x,0<|h|≤1

|ψ(x+ h)− ψ(x)|
|h|β

, 〈ϕ〉(β)
QT

:= sup
t,x,0<|h|≤1

|ϕ(t, x+ h)− ϕ(t, x)|
|h|β

The elliptic Hölder space of order l, H l(Rn), is defined as the space of continuously differentiable
functions ψ for all order j ≤ dle with finite norm

‖ψ‖l :=

dle∑
j=0

∑
(j)

∥∥Dj
xψ
∥∥
∞ +

∑
(dle)

〈Ddlex ψ〉({l}
+) (3.1)

where
∑

(j) represents the summation over all possible derivative of order j. The parabolic Hölder

space H l([0, T ]×Rn) space is defined as the set of measurable functions ϕ : [0, T ]→ H l(Rn) with
finite norm

‖ϕ‖l :=

dle∑
j=0

∑
(j)

∥∥Dj
xϕ
∥∥
∞ +

∑
(dle)

〈Ddlex ϕ〉({l}
+)

QT
(3.2)
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The spaces defined above are all Banach spaces equipped with their respective norms. For a com-
plete description see for example Chapter I in Adams and Fournier (2009).
In the spirit of HJB approach we now introduce the operators associated to the process Z:

Definition 3.1. For a real valued function ϕ ∈ Hα+δ([0, T ] × R), δ > 0, we define the following
linear operators

Aϕ(t, z) :=− µ∂ϕ
∂z

(t, z)

Btϕ(u, z) :=

∫
R

(
ϕ(t, z + γ(t, z, y))− ϕ(t, z)− γ(t, z, y)

∂ϕ

∂z
(t, z)

)
ν(dy)

Qϕ(t, z) :=µ̃ϕ(t, z) +

∫
R

(eγ − 1) (ϕ(t, z + γ(t, z, y))− ϕ(t, z)) ν(dy)

Gϕ(t, z) :=

∫
R

(eγ − 1)
2
ϕ(t, z + γ(t, z, y))ν(dy)

where µ stands for µ(t, z) and so on. In addition, H denotes the non linear operator

Ht[ϕ](z) := inf
|π|≤Π̄

[
2πQtϕ(t, z) + π2

∫
R

(eγ(t,z,y) − 1)2ϕ(t, z + γ(t, z, y))ν(dy)

]
where

Π̄ :=
eCT

|Γ|
max

(
‖µ̃‖∞ , 2

(
‖τ‖44,ν + ‖τ‖22,ν

)) (
1 +Ka

lip

)
. (3.3)

The main result concerning the functions a is:

Theorem 3.2. Let Assumptions 2.1 hold true and consider T < T ∗ as in Theorem 2.2. The
function a is the unique solution of

0 = −∂a
∂t

+Ata− Bt −Ht[a] , a(T, z) = 1 (3.4)

in the Hölder space Hα+δ([0, T ]×R) for 0 < δ < α−1. The function t→ a(t, z) is also differentiable
on (0, T ). The optimal strategy for the stochastic control problem (2.9) is

θ∗t = e−Zt−π∗ (t, Zt−)Xθ∗

t−, Xθ∗

t := x+

∫ t

0

θ∗r−dSr

where

π∗(t, z) := −Qa(t, z)

Ga(t, z)
(3.5)

�

For the general value function vf we have

Theorem 3.3. Let T < T ∗ as in Theorem 2.2. Let also Assumptions 2.1 hold true and f ∈
Hα+δ(R) for some 0 < δ < α− 1. The function vf in (2.7) admits the decomposition

vf (t, z, x) = a(t, z)x2 + b(t, z)x+ c(t, z)

where a is defined in (2.10), so it does not depend on f , and it is the unique solution in Hα+δ([0, T ]×
R) of 3.4, whereas b and c are the unique solutions of the following linear parabolic PIDEs

0 =− ∂b

∂t
+Ab− Bb− π∗Qb, b(T, .) = −2f ; (3.6)

0 =− ∂c

∂t
+Ac− Bc+

1

4

(Qb)2

Ga
, c(T, .) = f2 (3.7)
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in the Hölder space Hα+δ([0, T ]×R), where π∗ is defined in (3.5). The function t→ a(t, .), b(t, .), c(t, .)
are also differentiable on (0, T ).
Furthermore the optimal policy in the control problem (2.7) is given by

θ∗t := e−Zt−

(
π∗(t, Zt−)Xθ∗

t− −
1

2

Qb(t, Zt−)

Ga(t, Zt−)

)
, Xθ∗

t := x+

∫ t

0

θ∗r−dSr (3.8)

�

The proof of these result can be found in Chapter 7 in De Franco (2012). From the decomposition
(2.8) we also obtain the optimal price in (2.7):

x∗(f) := arg inf
x∈R

vf (t, z, x) = − b
f (t, z)

2a(t, z)
(3.9)

which is a linear function of the payoff f since bf is.

Non smooth payoff Theorem 3.3 allows us to characterize the value function vf when the
payoff function f is sufficiently smooth, i.e. f ∈ Hα+δ(R). But in almost all the interesting cases
this function is not even continuously differentiable (think for example to put options, straddles or
bear spreads). The following lemma proves the stability of the optimal price x∗(f) and the optimal
hedging strategy under small perturbation of the function f :

Lemma 3.4. Let f1, f2 be two measurable functions with fi(Z
t,z
T ) ∈ L2(P) for all t, z, i = 1, 2.

Then for any t < T and z ∈ R

|x∗(f1)(t, z)− x∗(f2)(t, z)| ≤a(t, z)−1/2
∥∥(f1 − f2)(Zt,zT )

∥∥
L2(P)

∣∣(vf1 − vf2) (t, z, x)
∣∣ ≤2

(
x+

∥∥(f1 + f2)(Zt,zT )
∥∥
L2(P)

)∥∥(f1 − f2)(Zt,zT )
∥∥
L2(P)

Fix now (t, z, x) and let fn such that
∥∥(fn − f)(Zt,zT )

∥∥
2
→ 0, n → ∞. If θn is the optimal

control in (2.7) when one uses fn then, for all ε > 0, there exists some N > 0 such that for any
n ≥ N one has ∣∣∣∣∣∣vf (t, z, x)− EP

(f(Zt,zT )− x−
∫ T

t

θnr−dS
t,z
r

)2
∣∣∣∣∣∣ ≤ ε

The proof of this Lemma can be found in Chapter 5 of De Franco (2012). One can thus
approximate a non-smooth payoff function f with smooth functions fn, controlling the error on the
value function and the cost of the hedging strategy with ‖f − fn‖2. Furthermore the corresponding
strategies (θn) become ε-optimal for the pay-off f starting from sufficiently large n.

4 Resolution schemes

We now present a numerical scheme to solve the PIDE introduced in Section 3 when the Lévy
measure ν verifies the Assumption 2.1-[L]. From (3.8) and (3.9) we remark that in order to solve
the problem (2.7), i.e. to find the optimal strategy θ∗ and the optimal price x∗, we only need to
compute the functions a and b, solutions, respectively, of PIDEs (3.4)–(3.6). We first focus on the
PIDE (3.4), which does not depend on the particular choice of the option one wants to hedge
and propose a monotone, stable and consistent scheme. We then propose a stable and consistent
scheme to solve the linear equation for b.

First of all, let us reverse the time by substituting t 7→ T − t in the coefficients of the PIDE
(3.4)–(3.6) and, with an abuse of notation, change the notation into µ(t, ., .) 7→ µ(T − t, ., .),
γ(t, z, y) 7→ γ(T − t, z, y). The PIDE will be solved on the truncated domain [0, T ]× [−Z,Z]. Due
to the presence of the integral terms, the boundary conditions must be imposed not only at the

7



boundary of the domain, but also outside, on the set [0, T ]× [−Ẑ −Z]∪ [Z, Ẑ], where Z < Ẑ. The
integrals appearing in the coefficients and the operators of the above PIDEs will be truncated at
the value Ŷ . Ŷ and Z are chosen such that Ŷ is “large enough” and

Z + sup
z∈R,y∈[−Ŷ ,Ŷ ]

γ(t, z, y) ≤ Ẑ, −Z + min
z∈R,y∈[−Ŷ ,Ŷ ]

γ(t, z, y) ≥ −Ẑ for all t ∈ [0, T ]

If we introduce

Btrϕ(t, z) :=

∫ Ŷ

−Ŷ

(
ϕ(t, z + γ(t, z, y))− ϕ(t, z, y)− γ(t, z, y)

∂ϕ

∂z
(t, z)

)
ν(dy)

Qtrϕ(t, z) := µ̃(t, z)ϕ(t, z) +

∫ Ŷ

−Ŷ

(
eγ(t,z,y) − 1

)
(ϕ(t, z + γ(t, z, y))− ϕ(t, z)) ν(dy)

Gtrϕ(t, z) :=

∫ Ŷ

−Ŷ

(
eγ(t,z,y) − 1

)2

ϕ(t, z + γ(t, z, y)ν(dy)

πtr[ϕ](t, z) :=−Qtrϕ(t, z)
(
Gtrϕ(t, z)

)−1

then, after truncating, the PIDEs for a and b take form as follows:

0 =
∂a

∂t
+Aa− Btra+ sup

|π|≤Π̄

{
−2πQtra− π2Gtrϕ

}
for (t, z) ∈ (0, T ]× [−Z,Z]

a(0, z) = 1, z ∈ [−Z,Z]

a(t, z) = 1, (t, z) ∈ [0, T ]× [−Ẑ,−Z] ∪ [Z, Ẑ]

(4.1)

and, after transforming b̃(t, z) := b(t, z)e−ηt,

0 =
∂b̃

∂t
− µ∂b̃

∂z
− Btr b̃+ ηb̃− πtr[a]Qtrb

for (t, z) ∈ (0, T ]× [−Z,Z]

b̃(0, z) = −2f(z), z ∈ [−Z,Z]

b̃(t, z) = −2f(z)a(t, z)e−ηt, (t, z) ∈ [0, T ]× [−Ẑ,−Z] ∪ [Z, Ẑ]

(4.2)

Remark 4.1. The effect of truncating the integral in a PIDE has been studied by Jakobsen and
Karlsen (2005) (See theorem 6.1 for error estimations for source problems).

Remark 4.2. Taking a = 1 as boundary condition can be justified by the fact that if S is a
martingale, this is indeed the exact solution, and in the non-martingale case, the effect of drift
should not be too strong. Alternatively, one could approximate the process Z with a Lévy process
and use the resulting explicit solution.

Remark 4.3. The choice of the boundary condition for b̃ outside the domain is justified as follows.
The value −b(t, z)/2a(t, z) (the minimizer of the value function, (3.9)) can be interpreted as the
cost of hedging the payoff f , that is, the wealth at time t which leads to the minimal hedging error
at maturity. In the regions far from the money (and under the assumption of zero interest rate),
the cost of hedging can be approximated by the option’s payoff, whence the boundary condition for
b.

4.1 Resolution scheme for a

In order to solve PIDE 4.1 numerically, we adapt the methodology proposed by Forsyth et al.
(2007). We calculate the values of a on a regular grid zj = j∆z for j ∈ (−N,N). Introduce

8



the integers j−Ẑ and jẐ such that −Ẑ < zj < Ẑ if and only if j−Ẑ < j < jẐ . In order to
avoid interpolation of the values of a when estimating the integral term, we use a space and time
dependent grid to define the intervals of integration. If we assume that Assumption 2.1-[RG]− i)
holds true for y0 = +∞, then we select the integration points yi, depending on z and t, such that
γ(t, z, yi(t, z)) = i∆z.

We define for k ≥ 1 we divide the segment [−Ŷ , Ŷ ] in three disjoint regions

Ω̂0(z) =
{
y|y−k− 1

2
(z) ≤ y ≤ yk+ 1

2
(z)
}
,

Ω̂1(z) =
{
y|yk+ 1

2
(z) < y < 1 or − 1 < y < y−k− 1

2
(z)
}
,

Ω̂2(z) =
{
y|1 ≤ |y| ≤ Ŷ

}
,

Set ∆yi(t, z) = yi+ 1
2
(t, z)− yi− 1

2
(t, z) and introduce the weights :

ω(t, z, yi) =



1

y2
i (t, z)

∫ yi+1/2(t,z)

yi−1/2(t,z)

y2ν(y)dy if |i| > k and yi−1/2, yi+1/2 ∈ Ω̂1

0 if |i| ≤ k∫ yi+1/2(t,z)

yi−1/2(t,z)

ν(y)dy otherwise

The integrals ω(t, z, yi) are calculated numerically with the trapezoidal rule over 5 points

ω̂(z, yi(z)) =
∆yi

4

(
1

2
ν(yi −

∆yi
2

) + ν(yi −
∆yi

4
) + ν(yi) + ν(yi +

∆yi
4

) +
1

2
ν(yi +

∆yi
2

)

)
(4.3)

Provided that the function g appearing in Assumptions 2.1-[L] is smooth, we obtain ω(t, z, yi) =
ω̂(t, z, yi) +O((yi+ 1

2
− yi− 1

2
)3).

Remark 4.4. From the definition of the integration points yi we have

∆z = γ(t, z, yi+ 1
2
(t, z))− γ(t, z, yi− 1

2
(t, z)) = ∆yi

∫ 1

0

∂yγ(t, z, yi− 1
2
(t, z) + r∆yi)dr

and from Assumption 2.1-[RG]− i), which is supposed verified on all R, we obtain

∆z ' ∆yi, for all i

It follows, in particular,

sup
i,t,z
|ω(t, z, yi)− ω̂(t, z, yi)| = O(∆z3) (4.4)

�

According to the definition of Btr we can write

Btra(t, z) :=

∫
Ω̂0(z)

· · ·+
∫

Ω̂1(z)

· · ·+
∫

Ω̂2(z)

. . .

and this term is integrated as in Forsyth et al. (2007). Let us start with the integration on Ω̂0(z):
if we define

D(t, z) =

∫
Ω̂0

γ(t, z, y)2νL(dy), (4.5)

then the integral is approximated by :∫
Ω̂0(z)

(
a(t, z + γ)− a(t, z)− γ ∂a

∂z
(t, z)

)
ν(dy) =

D(t, z)

2

∂2a

∂z2
+

∫
Ω̂0

O(γ3)ν(dy)
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and since |γ(t, z, y)| ≤M |y| around zero (Assumption 2.1-[I]) we can write∫
Ω̂0(z)

· · · = D(t, z)

2

∂2a

∂z2
+O(∆z3−α) (4.6)

In the region Ω̂2, away from zero, we can subdivide the domain in disjoint intervals centered in yi
and expand the function γ around the integration points yi: as in Forsyth et al. (2007) we obtain∫

Ω̂2(z)

(
a(t, z + γ(t, z, y))− a(t, z)− γ(t, z, y)

∂a

∂z
(t, z)

)
ν(dy)

=
∑

i yi∈Ω̂2

ω(z, yi)

(
a(t, z + γ(t, z, yi))− a(t, z)− γ(t, z, yi)

∂a

∂z

)
+O(∆z2)

=
∑

i; yi∈Ω̂2

ω(z, yi)

(
a(t, z + i∆z)− a(t, z)− i∆z ∂a

∂z

)
+O(∆z2) (4.7)

In the region Ω̂1, we readapt the argument in paragraph 3.1 and Appendix A of Forsyth et al.
(2007): we first transform the Lévy measure into ν̃(dy) := ν(y)y2dy and then

y−2

(
a(t, z + γ(t, z, y))− a(t, z)− γ(t, z, y)

∂a

∂z
(t, z)

)
= y−2

i

(
a(t, z + γ(t, z, yi))− a(t, z)− γ(t, z, yi)

∂a

∂z
(t, z)

)
+ e(i, y)

e(i, y) :=
d

dy

(
y−2

(
a(t, z + γ(t, z, y))− a(t, z, y)− γ(t, z, y)

∂a

∂z
(t, z)

))
|y=yi (y − yi)

+
(y − yi)2

2

∫ 1

0

dθ

∫ θ

0

d2

dy2

(
y−2

(
a(t, z + γ(t, z, u))− a(t, z, u)− γ(t, z, u)

∂a

∂z
(t, z)

)) ∣∣
u=yi+r(y−yi) dr

As before, we can write∫
Ω̂1

(
a(t, z + γ(t, z, y))− a(t, z)− γ(t, z, y)

∂a

∂z
(t, z)

)
ν(dy)

=
∑

i: yi∈Ω̂1

ω(z, yi)

(
a(t, z + γ(t, z, yi))− a(t, z)− γ(t, z, yi)

∂a

∂z
(t, z)

)
+

∑
i: yi∈Ω̂1

∫ yi+1/2

yi−1/2

e(i, y)ν̃(dy)

We can use the bound on the function γ and its derivative w.r.t. y to control the error term∑
i: yi∈Ω̂1

∫ yi+1/2

yi−1/2

e(i, y)ν̃(dy) = O
(

∆zmin(2−ε,3−α)
)

for any ε > 0 arbitrary small, so that∫
Ω̂1

(
a(t, z + γ(t, z, y))− a(t, z)− γ(t, z, y)

∂a

∂z
(t, z)

)
ν(dy) (4.8)

=
∑

i: yi∈Ω̂1

ω(z, yi)

(
a(t, z + i∆z)− a(t, z)− i∆z ∂a

∂z
(t, z)

)
+O

(
∆zmin(2−ε,3−α)

)
We add up (4.6)–(4.7) and (4.8), together with the numerical integration of the weights ω(t, z, yi)
and (4.4), we can finally write

Btra(t, z) :=
D(t, z)

2

∂2a

∂z2

+
∑

yi, |i|>k

ω̂(t, z, yi)

(
a(t, z + i∆z)− a(t, z)− i∆z ∂a

∂z
(t, z)

)
+O

(
∆zmin(2−ε,3−α)

)
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for ε arbitrary small. In the same way we approximate the operators Qtr and Gtr: we obtain then

Qtra(t, z) :=µ̃a(t, z) +D(t, z)
∂a

∂z

+
∑

yi, |i|>k

IQ(t, z, yi) (a(t, z + i∆z)− a(t, z)) +O
(

∆zmin(2−ε,3−α)
)

Gtra(t, z) :=D(t, z)a(t, z) +
∑

yi, |i|>k

IG(t, z, yi)a(t, z + i∆z) +O(∆z2−ε)

where ÎQ and ÎG are a five point approximation of, respectively,

IQ(t, z, yi) :=



1

y2
i (t, z)

∫ yi+1/2(t,z)

yi−1/2(t,z)

(
eγ(t,z,y) − 1

)
|y|2ν(dy) if yi+1/2, yi−1/2 ∈ Ω̂1

∫ yi+1/2(t,z)

yi−1/2(t,z)

(
eγ(t,z,y) − 1

)
ν(dy) otherwise

and

IG(t, z, yi) :=



1

y2
i (t, z)

∫ yi+1/2(t,z)

yi−1/2(t,z)

(
eγ(t,z,y) − 1

)2

|y|2ν(dy) if yi+1/2, yi−1/2 ∈ Ω̂1

∫ yi+1/2(t,z)

yi−1/2(t,z)

(
eγ(t,z,y) − 1

)2

ν(dy) otherwise

The above computation allows us to rewrite PIDE (4.1) on [−Z,Z] into the following:

∂a

∂t
(t, z)− D(t, z)

2

∂2a

∂z2
− µ(t, z)

∂a

∂z
+ sup
π∈[−Π̄,Π̄]

{(
Ṽ (t, z) −2πD(t, z))

∂a

∂z

−
∑
|i|≥k

W̃ (t, z, yi, π)a(t, z + i∆z) + R̃(t, z, π)a(t, z)
}

a(0, z) = 1 (4.9)

where

W̃ (t, z, yi, π) := ω̂(t, z, yi) + 2πÎQ(t, z, yi) + π2ÎG(t, z, yi)

Ṽ (t, z) := ∆z
∑
|i|≥k

iω̂(t, z, yi)

R̃(t, z, π) :=
∑
|i|>k

(
ω̂(t, z, yi) + 2πÎG(t, z, yi)

)
− 2πµ̃− π2D(t, z)

First an implicit scheme is used for the convection diffusion part and an explicit one for the integral
part to solve equation (4.9). We use the time step ∆t and an(.) stands for a(n∆t, .):

an+1 − an

∆t
− D(tn+1, .)

2

∂2an+1

∂z2
− µ(tn+1, z)

∂an+1

∂z

+ sup
π∈[−Π̄, Π̄]

[
(Ṽ (tn, .)− 2πD(tn, z))

∂an

∂z
+

R̃(tn, ., π)an −
∑
|i|>k

W̃ (tn, ., yi, π)an(tn, z + i∆z)

 = 0 (4.10)

For the implicit term a classical central difference scheme (order two) is used for the first order
differential term coupled with forward/backward differencing when matrix coefficients due to con-
vection and diffusion are negative (see for example Forsyth et al. (2005)). The explicit first order
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differential term is treated to have monotony of the scheme. This leads us to solve equation (4.10)
with

0 = an+1
j (1 + ∆t(αj(t

n+1) + βj(t
n+1))−∆tαj(t

n+1)an+1
j−1 −∆tβj(t

n+1)an+1
j+1

+ sup
π∈[−Π̄, Π̄]

[
anj (−1 + ∆t(R̃(tn, zj , π) +

|Ṽ (tn, zj)− 2πD(tn, zj)|
∆z

)

−anj−1∆t
(Ṽ (tn, zj)− 2πD(tn, zj))

+

∆z
− anj+1∆t

(Ṽ (tn, zj)− 2πD(tn, zj))
−

∆z

−∆t
∑
|i|>k

W̃ (tn, zj , yi, π)anj+i


where an+1

j stands for an approximation of an+1(zj) calculated at point zj and αj and βj are
positive weights (see for example Forsyth and Labahn (2007)) given by :

αj,central(t) =
D(t, zj)

2∆z2
− µ(t, zj)

2∆z

βj,central(t) =
D(t, zj)

2∆z2
+
µ(t, zj)

2∆z

if αj,central(t) or βj,central(t) is negative, we use

αj,forward/backward(t) =
D(t, zj)

2∆z2
+max(0.,

−µ(t, zj)

∆z
)

βj,forward/backward(t) =
D(t, zj)

2∆z2
+max(0,

µ(t, zj)

∆z
)

Remark 4.5. As explained in Forsyth et al. (2007) the results would be more accurate if we used
an order two characteristic scheme in order to avoid a transport dominated problem but here the
coefficient µ is time dependent so in order to integrate the characteristics we would have to solve a
non linear time dependent equation without any explicit solution. So we would have no choice but
to integrate numerically the characteristics.

Defining the tridiagonal matrix M such that

Mj,j(t
n+1) = αj(t

n+1) + βj(t
n+1),

Mj,j+1(tn+1) = βj(t
n+1),

Mj,j−1(tn+1) = αj(t
n+1),

and the matrix B such that

Bj,j(t
n, π) = R̃(tn, π, zj) +

|Ṽ (tn, zj)− 2πD(tn, zj)|
∆z

,

Bj,j−1(tn, π) = −(Ṽ (tn, zj)− 2πD(tn, zj))
+,

Bj,j+1(tn, π) = −(Ṽ (tn, zj)− 2πD(tn, zj))
−,

Bj,j+i(t
n, π) = −W̃ (tn, π, zj , yi), if |i| > k,

Bj,j+i(t
n, π) = 0, for 1 < |i| ≤ k,

the system can be written :

(I + ∆tM(tn+1))an+1 + sup
π∈[−Π̄, Π̄]

(−I + ∆tB(tn, π))an = 0 (4.11)

Proposition 4.6. Under the CFL condition

sup
t,j

[
Ṽ (t, zj)

∆z
+ 2Π(|µ(t, zj)|+D(t, zj))+

∑
|i|>k

(2ΠIQ(zj , yi) + ω(zj , yi)) + Π2D(t, zj))

∆t < 1 (4.12)
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The scheme 4.11 is consistent, monotone, L∞ stable, and converges to the viscosity solution of
equation 4.1.

�

The proof is postponed to paragraph 6.1

Remark 4.7. A scheme for finite variation processes can be easily derived from the one presented
by suppressing the Ω1 domain.

4.2 Resolution methodology to calculate b

For the truncated PIDE (4.2) we using the same discretization as before and we get the following
equation to solve on [−Z,Z]:

∂b̃

∂t
− D(t, z)

2

∂2b̃

∂z2
+
∂b̃

∂z

(
(Ṽ (t, z)− µ(t, z)− πtr[a]D(t, z)

)
+b̃
(
η + R̂(t, z, πtr[a])

)
−
∑
|i|≥k

Ŵ (t, z, yi, π
tr[a])b̃(t, z + i∆z)

b̃(0, z) = −2f(z), z ∈ [−Z,Z]

b̃(t, z) = −2f(z)a(t, z)e−ηt, (t, z) ∈ [0, T ]× [−Ẑ,−Z] ∪ [Z, Ẑ] (4.13)

where

Ŵ (t, z, yi, π
tr[a]) := ω̂(t, z, yi) + πtr[a]ÎQ(t, z, yi)

R̂(t, z, πtr[a]) :=
∑
|i|>k

(
ω̂(t, z, yi) + πtr[a]ÎQ(t, z, yi)

)
− πtr[a]µ(t, z)

and Ṽ and D(t, z) are the function introduced in paragraph 4.1. We propose the following time
discretization scheme :

b̃n+1 − b̃n

∆t
− D(tn+1, .)

2

∂2b̃n+1

∂z2
+ (R̂(tn+1, ., πtr[a]n+1) + η)b̃n+1 +

(Ṽ (tn+1, .)− π[a]n+1D(tn+1, z)− µ(tn+1, z))
∂b̃n+1

∂z
−∑

|i|>k

(Ŵ (tn+1, ., yi, π
tr[a]n+1))+bn(z + i∆z) +

∑
|i|>k

(Ŵ (tn+1, ., yi, π
tr[a]n+1))−bn(z + i∆z) = 0 (4.14)

Using the same kind of discretization as in previous paragraph, we get

b̃n+1
j (1 + ∆t(αj(t

n+1) + βj(t
n+1) + R̂(tn+1, ., πtr[a]n+1) + η)−

∆tαj(t
n+1)b̃n+1

j−1 −∆tβj(t
n+1)b̃n+1

j+1

+∆t
∑
|i|>k

(Ŵ (tn+1, zj , yi, π
tr[a]n+1))−b̃nj+i

−∆t
∑
|i|>k

(Ŵ (tn+1, zj , yi, π
tr[a]n+1))+b̃nj+i = bnj (4.15)

with αj , βj positive weights given by :

αj,central(t, π) =
D(t, zj)

2∆z2
+
Ṽ (t, zj)− πD(t, z)− µ(t, zj)

2∆z

βj,central(t, π) =
D(t, zj)

2∆z2
− Ṽ (t, zj)− πD(t, z)− µ(t, zj)

2∆z
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if αj,central(t, π) or βj,central(t, π) is negative, we use

αj,forward/backward(t, π) =
D(t, zj)

2∆z2
+

(
Ṽ (t, zj)− πD(t, z)− µ(t, zj)

∆z

)+

βj,forward/backward(t, π) =
D(t, zj)

2∆z2
+

(
Ṽ (t, zj)− πD(t, z)− µ(t, zj)

∆z

)−
Proposition 4.8. For a space discretization accurate enough (∆Z small enough), taking

η = (Π + ε)||µ̄||+ 2

∫
Ω2

(1 + Π|ey − 1|ν(dy)

the scheme (4.15) is consistent and stable so it converges to the smooth solution of the PIDE 4.2.

�

The proof is postponed to paragraph 6.2.

5 Application to the electricity market

On the energy market, the forward curve at date t for one MW delivered at date T is often
modeled with a HJM model as in Clewlow and Strickland (2000). Many studies have shown that
spikes on the electricity and gas markets are incompatible with Gaussian factors (Geman and
Roncoroni, 2006; Meyer-Brandis and Tankov, 2008) and many models have been developed using
Levy processes to try to fit the observed fat tails (Deng and Jiang, 2005; Benth et al., 2007). Most
of them directly model the price under the martingale measure, or make some assumption on the
change of probability resulting in a similar model under the martingale measure (Benth et al.,
2007).

We propose here a model for the forward curve deformation which satisfies Assumptions 2.1 so
that we can apply Theorems 3.2–3.3. We start by introducing a Lévy process L as follows

Ls = ζs+

∫ s

0

∫
R
yJ̃(ds× dy) (5.1)

where ζ ∈ R and J̃ is a compensated Poisson random measure, whose Lévy measure is denoted by
ν(dy). Fix c ∈ R+, l(s) = e−cs and

At :=

∫ t

0

ecsdLs (5.2)

If T → ψ(0, T ) denotes the price at time 0 of a future contract with maturity T and instan-
taneous delivery (which is supposed to be known), then we will model the price at time t of the
same future contract as a random perturbation of the forward curve ψ: using the above notation
we have

F̄0,T,t = ψ(0, T )el(T )At

By no arbitrage in the futures market, the price at time t of a future contract with duration d is
equal to the average over the time period [T, T +d] of the future contract prices with instantaneous
delivery. We therefore model the price at time t of a future contract with delivery time T and
duration d > 0 by

Fd,T,t =
1

d

∫ T+d

T

F̄0,s,tds =
1

d

∫ T+d

T

ψ(0, s)el(s)Atds

For reasons which will become clear in the sequel, we prefer the following notation:

Fd,T,t := exp(Φ(At)) where Φ(A) := log

(
1

d

∫ T+d

T

ψ(0, s)el(s)Ads

)
(5.3)
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The model (5.3) essentially states that the price of a future contract Fd,T,t is the average price
on the interval [T, T + d] of the future contract with instantaneous delivery up to the random
perturbation eg(s)A. In this context, the problem of hedging a European option on Fd,T,t with the
quadratic hedging approach becomes

minimize E

(H(Fd,T,t)− x−
∫ T

t

θu−dFd,T,u

)2
 over θ and x ∈ R (5.4)

for a given map H. The process Fd,T,t corresponds to S in the formulation (1.1). The following
results proves that Z = log(F ) is a Markov jump process satisfying our assumptions.

Lemma 5.1. The process Zt := log(Fd,T,t) verifies

dZt = µ(t, Zt)dt+

∫
γ(t, Zt−, y)J̃(dydt)

where

γ(t, z, y) :=Φ(Φ−1(z) + yect)− z

µ(t, z) :=ζectΦ′(Φ−1(z)) +

∫
R

(
γ(t, z, y)− yectΦ′(Φ−1(z))

)
ν(dy)

Assume that the Lévy measure ν(dy) is given by ν(dy) = g(y)|y|−(1+α), for some α ∈ (1, 2) and a
bounded, strictly positive and measurable g such that the following condition hold true:

i). there exists some positive m ≥ 0 such that for all y, y′ ∈ (−y0, 0) ∪ (0, y0) with yy′ > 0,
|g(y)− g(y′)| ≤ m|y − y′|

ii). lim
y→0−

g(y) = g(0−) and lim
y→0+

g(y) = g(0+) with g(0+), g(0−) > 0

iii).

∫
y≤−1

y4ν(dy) +

∫
1<y

e4yν(dy) < +∞

then the functions µ and γ verify the Assumptions 2.1-[C,L, I,ND,RGi,RGiii], where the func-
tion τ is given by

τ(y) = max (|y|, |ey − 1|)

The proof is postponed to Section 6.3.
In order to apply our results (Theorems 3.2 and 3.3) we also need to verify the Assumption

2.1-[RGii] and it is easy to see that the function γ does not verify it: however, as we have already
said in Section 2, this can be avoided by making a change of variable Z ′t = φ(t, Zt). We refer to
Chapter 7 and 8 in De Franco (2012) for further details.

We can transform the problem (5.4) by using the process Z to obtain

vf (t, z, x) = inf
θ∈X (t,z,x)

E

(f(Zt,zT )− x−
∫ T

t

θu−d exp(Zt,zu )

)2
 (5.5)

where X (t, z, x) is defined in (2.6) and f(z) = H(ez).
We want to give a special class of option one may want to use in problem (5.5). First define,

for some G > 0 the function p(x) : (G− x)+, the usual put function, and

h(A) :=
1

d′

∫ T+d′

T

ψ(0, s)el(s)Ads
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for some d′ 6= d. From (5.3) it follows that h ◦ Φ−1(Zt) = Fd′,T,t, and then, by defining f :=
p(h ◦ Φ−1), we obtain f(Zt) = (G − Fd′,T,t)+, which is a put option written on a future contract
with different duration d′. Using this particular option we can rewrite problem (5.5) as follows

inf
θ∈X (t,z,x)

Et,z,x
((G− Fd′,T,t)+ − x−

∫ T

t

θu−dFd,T,u

)2


The financial meaning of the above problem is particularly interesting: one tries to hedge (in the
quadratic sense) a put option written on a future contract with duration d′ 6= d only by using, as
hedging instrument, the future contract with duration d. This may be useful when, for example,
one sells a future contract with a non-standardized duration on the OTC market and hedges its
position only by using instruments which are available in the market.

5.1 A degenerate case

In this last section we will study the problem (5.5) when L in (5.1) is a Normal Inverse Gaussian
process with parameter α, β, δ, u: Lt ∼ NIG(α, β, δt, ut).

Remark 5.2. The parameter α should not be mistaken for the parameter in Lemma 5.1. We use
this notation because it is standard in the literature.

We can write then

Lt =

(
u+

βδ√
α2 − β2

)
t+

∫ t

0

∫
R
yJ̃(dyds)

where J̃ is a compensated Poisson random measure with intensity

ν(dy) =
αδ

π|y|
K1(α|y|)eβydy ν(dy)

y→0∼ δ

π|y|2
dy

ν(dy)
y→+∞∼ 1

|y|3/2
e−(α−β)ydy ν(dy)

y→−∞∼ 1

|y|3/2
e−(α+β)|y|dy

where K1 is the modified Bessel function of the second kind (paragraph 4.4.3 in Cont and Tankov
(2004)).

Remark 5.3. The NIG is a infinite variation Lévy process with stable-like behavior of small
jumps, and since the Blumenthal-Getoor index is equal to 1, we cannot apply Lemma 5.1 and then
Theorems 3.2–3.3. It is nevertheless a case of interest because the NIG model is popular among
practitioners.

The goal of this paragraph is to solve numerically the PIDEs (4.1)–(4.2) where the model for
Z is given in Lemma 5.1 and the source of randomness L in (5.1) is given by the NIG process
introduced above. We first apply Scheme (4.11) for the function a relatively to the maturity T = 1.
First notice that it is necessary to compute numerically the coefficients µ and γ given in Lemma
5.1:

µ(t, z) =Φ
′
(Φ−1(z))

(
u+

βδ√
α2 − β2

)
ect +

∫
R

[
Φ
(
Φ−1(z) + yect

)
− z − yectΦ

′
(Φ−1(z))

]
ν(dy)

γ(t, z, y) =Φ
(
Φ−1(z) + yect

)
− z

and the function D(t, z) introduced in (4.5): for this, we compute the integration points yi, as in
Section 4.1, such that γ(t, z, yi(t, z)) = i∆z, or equivalently

yi(t, z) := e−ct
(
Φ−1(z + i∆z)− Φ−1(z)

)
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By expanding γ around zero we obtain

D(t, z) :=

∫ yk+1/2(t,z)

y−k−1/2(t,z)

γ(t, z, y)2ν(dy) ' e2ct(Φ
′
(Φ−1(z)))2

∫ yk+1/2(t,z)

y−k−1/2(t,z)

y2ν(dy)

'ect
(

Φ−1(z + (k +
1

2
)∆z)− Φ−1(z − (k +

1

2
)∆z)

)
(Φ
′
(Φ−1(z)))2 δ

π

since, around zero, we have y2ν(dy) ' δ
π + δβ

π y +O(y2). (See for example Raible (2000)).
By using a method similar to the ones of Section 4.1, we can estimate∫

R

[
Φ
(
Φ−1(z) + yect

)
− z − yectΦ

′
(Φ−1(z))

]
ν(dy)

with

1

2
∆z(Φ

′
(Φ−1(z))ect)2 δ

π
+

∑
yi, |i|>k

ω̂(t, z, yi)
[
Φ
(
Φ−1(z) + yie

ct
)
− z − yiectΦ

′
(Φ−1(z))

]
=

1

2
∆z(Φ

′
(Φ−1(z))ect)2 δ

π
+

∑
yi, |i|>k

ω̂(t, z, yi)
[
i∆z −

(
Φ−1(z + i∆z)− Φ−1(z)

)
Φ
′
(Φ−1(z))

]
where the weights ω̂(t, z, yi) are given in (4.3), relatively to the Lévy measure ν. The effect of
approximating the coefficient of the PIDE on the solution of the source problem, appearing for
example in the pricing of European options, has been studied in Jakobsen and Karlsen (2005).

We want to solve problem (5.5) for European options f , with maturity one week and delivery for
the 7 days of the week. We recall that the future contract in this case is given by

F7days,1week,t =
1

7

∫ 14

7

ψ(0, s)el(s)Atds (5.6)

and At is given in (5.2) relatively to the NIG process L given above. The forward curve for the
seven days of delivery is given in Table 1, indicating that prices are lower for the week end. The

Day s Price (ψ(0, s))
Monday s ∈ [7, 8) 80
Tuesday s ∈ [8, 9) 90
Wednesday s ∈ [9, 10) 70
Thursday s ∈ [10, 11) 90
Friday s ∈ [11, 12) 80
Saturday s ∈ [12, 13) 70
Sunday s ∈ [13, 14] 60

Table 1: The forward curve. Prices are given in Eur.

parameters of the NIG process are u = 0.08, α = 6.23, β = 0.06, δ = 0.1027. The mean reverting
coefficient c is taken equal to 0.19. This case with continuous long delivery corresponds to a non
stationary process where the hedge cannot be calculated efficiently as in Hubalek et al. (2006) or
Goutte et al. (2011).
We use the scheme (4.11) to obtain a numerical approximation of the function a and the optimal
control π∗. Figure 1 shows the function a whereas the optimal control π∗ is given in Figure 2. For
all numerical experiments we suppose that Ẑ = 12, Z = 8, we take a number of meshes equal to
800 and a number of time steps equal to 800. The value k for defining the diffusion zone in the
PIDE is equal to 3. For an at-the-money call option, the function b is given in Figure 3, whereas,
for at-the-money put option, the function b is shown in Figure 4.

Practitioners usually price this kind of option and calculate the hedging strategy by assuming
that the underlying process F is a martingale. It is therefore interesting to evaluate the loss of
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Figure 1: The value function (t, z)→ a(t, z) for the NIG process.

Figure 2: The optimal control (t, z)→ π∗(t, z) for the NIG process.

efficiency when using the hedging strategy computed in the martingale model. Assuming that F
is a martingale means that we should have

Fd,T,t :=
1

d

∫ T+d

T

ψ(0, s) exp (M(s, t) + l(s)At) ds

for some M that makes F a martingale under the historical probability P. By using Lemma 15.1
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Figure 3: The value function b(t, z) for an at-the-money call option.

Figure 4: The value function b(t, z) for an at-the-money put option.

in Cont and Tankov (2004) we obtain

M(t, s) = −
∫ t

0

((
u+

βδ√
α2 − β2

)
e−c(s−r) + δ

(√
α2 − β2 −

√
α2 − (β + e−c(s−r))2

))
dr

First remark that a = 1 when the underlying process F is a martingale: indeed, when considering
the PIDE (3.4), we have

0 = −∂a
∂t
− µ∂a

∂z
−
∫
R

(
a(t, z + γ)− a(t, z)− γ ∂a

∂z
(t, z)

)
νL(dy)− inf

|π|≤Π̄

{
2πQa(z) + π2Ga

}
a(T, z) = 1

19



Option H Moneyness Option value (xtrue) efficiency(θtrue) efficiency(θmart)
Call 1 4.199 1.085 1.316
Put 1 4.213 1.087 1.315
Call 1.5 0.120 0.168 0.212
Put 1.5 38.80 0.175 0.34

Table 2: Pricing and standard deviation of hedged portfolio

But from Definition 3.1, we have

Qa(z) :=

∫
R

(eγ − 1) (a(t, z + γ(t, z, y))− a(t, z)) ν(dy)

since µ̃, given in (2.2), is equal to zero (it is the drift of the process F which is now a martingale).
From this, it is straightforward to deduce that the function a = 1 is the unique solution of PIDE
(3.4). So that, when F is a martingale, one only needs to compute the function b.

We now evaluate the loss of efficiency when using the martingale hedging strategies compared
to the quadratic hedging strategies. Our efficiency comparison criterion is the following: if H is
the option (call/put) and θtrue, θmart are, respectively, the optimal quadratic hedging strategy and
the martingale strategy, then the efficiency is measured in terms of the standard deviation of the
hedged portfolios:

efficiency(θtrue)2 := Var

(
H(Fd,T,t)− xtrue −

∫ T

t

θtruer− dFd,T,r

)
where xtrue is the true optimal price given in (3.9). Similarly

efficiency(θmart)2 := Var

(
H(Fd,T,t)− xmart −

∫ T

t

θmartr− dFd,T,r

)
where xmart is the price given in (3.9) when one uses the function a and b relative to the martingale
model., i.e. xmart is the risk neutral price of H. The variances are computed by Monte Carlo over 2
million paths, with 800 rebalancing dates in each path. The trajectory of Fd,T,t is simulated using
the true model in both cases.

Table 2 summarizes the results of simulations, for t = 0. The numerical experiment proves that
one loses efficiency when using the martingale hedging strategy. This is consistent with the fact
that θtrue achieves the minimum in problem (5.5) and overperforms the strategy θmart.

6 Proofs

6.1 Proof of Proposition 4.6

Proof. To prove consistency, suppose that the solution a is regular, use the fact that differential
scheme used is of order 1 and the Taylor expansions calculated previously are of order at least 1.
Define

Lπ[a](t, z) = A[a](t, z)− B[a](t, z)− [2π(t, z)Q[a](t, z)+ π2G[a](t, z)
]

Then calculate the error with a Taylor expansion:

|(∂a
∂t

)nj + sup
π∈(−Π,Π)

Lπ[a](t, z)nj −
an+1
j − anj

∆t
− sup
π∈(−Π,Π)

[B(tn, π)an]j − [M(tn+1)an+1]j |

≤ |(∂a
∂t

)nj −
an+1
j − anj

∆t
|+ sup

π∈(−Π,Π)

|(Lπ[a](t, z))nj − [B(tn, π))an]j − [M(tn+1)an+1]j |

≤ O(∆t) + sup
π∈(−Π,Π)

|(Lπ[a](t, z))nj − [B(tn, π)an]j − [M(tn)an]j |+ ||M(tn)an −M(tn+1)an+1||

≤ O(∆t) +O(∆z) + ||M(tn+1)(an+1 − an)||+ ||(M(tn+1)−M(tn))an||
≤ O(∆t) +O(∆z)(6.1)
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As for the monotony, rewrite equation (4.11) as:

T (an+1
j , an+1

i 6=j , a
n
i ) = [(I + ∆tM(tn+1))an+1 + sup

π∈(−Π,Π)

(−I + ∆tB(tn, π))an]j (6.2)

First notice that

W̃ (t, π, z, yi) =



1

y2
i (z)

∫ y
i+1

2
(z)

y
i− 1

2
(z)

y2(π(exp(γ)− 1) + 1)2νL(y)dy, if yi(z) ∈ Ω1(z),∫ yi+
1
2 (z)

yi− 1
2 (z)

(π(exp(γ)− 1) + 1)2νL(y)dy, if yi(z) ∈ Ω2(z),

0, if yi(z) ∈ Ω0(z)

(6.3)

so W̃ ≥ 0 and Bi,j ≤ 0 for j 6= i. Because of equation (4.12) , −1 + ∆tBi,i ≤ 0. So we get that T is
decreasing with respect to ani for all j. Besides α, β are positive, so T is decreasing with respect to
an+1
i 6=j and increasing with respect to an+1

j . We conclude that the scheme is monotone (Barles and
Souganidis, 1991).

As for the L∞ stability we follow the methodology described in Forsyth et al. (2005). Let ã be
the discretized solution of (4.11) and suppose that we begin the scheme with a small perturbation
e0 :

â0 = ã0 + e0 (6.4)

with en = (en0 , ..., e
n
N ) the perturbation error at time step n. Because we impose some special

Dirichlet conditions, we get that enj = 0 for j ≤ j−Ẑ and j ≥ jẐ . To avoid complicated notation,
in the sequel it should be understood that π is the limiting value of the optimal strategy. For
j−Ẑ < j < jẐ , the error evolves as follows :

en+1
j (1 + ∆t(αj(t

n+1) + βj(t
n+1)) −∆tαj(t

n+1)en+1
j−1 −∆tβj(t

n+1)en+1
j+1 =

enj (1−∆tBj,j(t
n, π))−∆t

∑
i 6=j

Bj,i(t
n, π)eni

We note ||en|| = supj |enj |, because all coefficients are positive under the CFL condition (4.12)

en+1
j (1 + ∆t(αj(t

n+1) + βj(t
n+1)) ≤ ||en||

1−∆t(Bj,j(t
n, π) +

∑
i 6=j

Bj,i(t
n, π))

+ (6.5)

∆t(αj(t
n+1) + βj(t

n+1))||en+1|| (6.6)

We note j∗ the point number such that en+1
j∗ = ||en+1||.

||en+1||(1 + ∆t(αj∗(t
n+1) + βj∗(t

n+1)) ≤ ||en||+ ∆t(αj∗(t
n+1) + βj∗(t

n+1))||en+1|| (6.7)

So

||en+1|| ≤ ||en|| (6.8)

and we get the stability

Remark 6.1. The use of a θ scheme or an implicit scheme for the integral terms is not theoretically
possible because it doesn’t allow us to have a stable scheme. On the other hand, numerically, π and
πµ turn out to be negative so using an implicit scheme does not break stability.

As noted in Biswas et al. (2010) in the proof of theorem 3.1, the convergence towards viscosity
solution is only an adaptation of Barles-Souganidis argument Barles and Souganidis (1991).
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6.2 Proof of Proposition 4.8

Proof. The consistence is an obvious result for the differential operator used. As for stability,
we calculate as previously the perturbation error propagation coming from an initial error e0 =
(e0

0, ..., e
0
N ). Notice once again the error is zero at the boundary due to Dirichlet condition imposed.

The error for j−Ẑ < j < jẐ evolves as follows :

en+1
j (1 + ∆t(αj(t

n+1) + βj(t
n+1) + R̂(tn+1, π[a]n+1, zj) + η)−
∆tαj(t

n+1)en+1
j−1 −∆tβj(t

n+1)en+1
j+1

+∆t
∑
|i|>k

(Ŵ (tn+1, π[a]n+1, zj , yi))
−en+1

j+i = (1 + ∆t
∑
|i|>k

(Ŵ (tn+1, π[a]n+1, zj , yi))
+)enj+i

An easy calculation gives that

R̂(tn+1, π[a]n+1, zj) + η ≥ ε||µ̂||+
∫

Ω2

(1 + Π|ey − 1|ν(dy) +O(∆z) (6.9)

So noting j∗ the point number such that en+1
j∗ = ||en+1|| :

en+1
j∗ (1 + ∆t(αj∗(t

n+1) + βj∗(t
n+1) + R̂(tn+1, π[a]n+1, zj) + η) ≤
∆t(αj∗(t

n+1) + βj∗(t
n+1))||en+1||

+∆t
∑
|i|>k

(Ŵ (tn+1, π[a]n+1, zj∗ , yi))
−||en+1||+ (1 + ∆t

∑
|i|>k

(Ŵ (tn+1, π[a]n+1, zj∗ , yi))
+)||en||

so

||en+1||(1 + ∆t(R̂(tn+1, π[a]n+1, zj∗) + η −
∑
|i|>k

Ŵ (tn+1, π[a]n+1, zj∗ , yi)
−))

≤ (1 + ∆t
∑
|i|>k

(Ŵ (tn+1, π[a]n+1, zj∗ , yi))
+)||en|| (6.10)

and using equation (6.9) we get that
||en+1|| ≤ ||en||

.

6.3 Proof of Proposition 5.1

Proof. Before we start, remark that the function A 7→ Fd,T (A) is strictly increasing, so invertible,
and infinitely differentiable: in particular

Φ′(A) =

∫ T+d

T
ψ(0, s)l(s)el(s)Ads∫ T+d

T
ψ(0, s)el(s)Ads

Φ′′(A) =

(∫ T+d

T
ψ(0, s)l2(s)el(s)Ads

)(∫ T+d

T
ψ(0, s)el(s)Ads

)
−
(∫ T+d

T
ψ(0, s)l(s)el(s)Ads

)2

(∫ T+d

T
ψ(0, s)el(s)Ads

)2

from which we deduce

e−c(T+d) ≤ Φ′(A) ≤ e−cT and e−2c(T+d) − e−2cT ≤ Φ′′(A) ≤ e−2cT − e−2c(T+d)

From Itô’s formula, we obtain

dZt =

(
Φ′(At)e

ctζ +

∫
R

(
Φ(At− + ecty)− Φ(At−)− yectΦ′(At−)

)
ν(dy)

)
dt

+

∫
R

(
Φ(At− + ecty)− Φ(At−)

)
J̃(dydt)
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or equivalently

dZt = µ(t, Zt)dt+

∫
γ(t, Zt−, y)J̃(dydt)

We can now prove that µ and γ verify the Assumptions 2.1. We detail the computations only for
the function γ, since similar computations can be done for µ. First we remark that z → γ(t, z, y)
is differentiable and we can compute this derivative to obtain

∂zγ(t, z, y) =− 1 + (Φ′(Φ−1(z)))−1Φ′(Φ−1(z) + yect)

=ecty(Φ′(Φ−1(z)))−1

∫ 1

0

Φ′′(Φ−1(z) + rect)dr

so that

|∂zγ(t, z, y)| =
∣∣∣∣ecty(Φ′(Φ−1(z)))−1

∫ 1

0

Φ′′(Φ−1(z) + rect)dr

∣∣∣∣
≤|y|ecT (inf

A
|Φ(A)|)−1 ‖Φ′′‖∞ ≤ e

cT e−c(T+d) ‖Φ′′‖∞ |y|

≤|y|ecT ec(T+d)
(
e−2cT − e−2c(T+d)

)
≤ ecd|y|

From the bounds on the first and second derivative of Φ we obtain supt,z |∂zγ(t, z, y)| ≤ ecd|y|,
which gives us the function ρ introduced in Assumptions 2.1. Again by the definition of Φ in (5.3)
we have

exp(e−c(T+d)y)− 1 ≤ eγ(t,z,y) − 1 ≤ ey − 1

if y > 0 and the inverse inequality stands in force if y < 0 which yield supt,z |eγ(t,z,y)−1| ≤ |ey−1|.
According to the definition of the function τ given in Assumptions 2.1 and the estimations above
we deduce that

τ (y) := max

(
sup
t,z

(
|γ (t, z, y) |,

∣∣∣eγ(t,z,y) − 1
∣∣∣) , ρ(y)

)
= ecd max (|y|, |ey − 1|)

If follows then that Assumptions 2.1-[C, I,L] hold true. For Assumption 2.1-[ND] we have, from
the definition of γ (

eγ(t,z,y) − 1
)2

≥
(

exp(e−c(T+d)y)− 1
)2

so then, for some positive M > 0 we have

Γ(y) :=

∫
R

inf
t,z

(
eγ(t,z,y) − 1

)2

ν(dy) ≥
∫
R

inf
t,z

(
exp(e−c(T+d)y)− 1

)2

ν(dy)

≥M
∫
|y|≤ε

|y|1−αg(y)dy > 0

since g(0+) and g(0−) are strictly positive, we can select ε small enough and obtain

Γ(y) ≥M
∫
|y|≤ε

|y|1−αdy > 0

We can derive γ w.r.t y to obtain

γy(t, z, y) =ectΦ′(Φ−1(z) + ecty)

γyy(t, z, y) =e2ctΦ′′(Φ−1(z) + ecty)

so then e−c(T+d) ≤ |γy(t, z, y)| ≤ ecT and |γyy(t, z, y)| ≤ e2cT , which proves that Assumptions
2.1-[RGi] holds true. For Assumption 2.1-[RGiii], one can differentiate γy w.r.t. z and give for it
an upper bound to prove that indeed z → γy(t, z, y) is Lipschitz continuous uniformly in t, y. The
Assumption 2.1-[RGii] does not hold true since trivially γy(t, z, y) = ectΦ′(Φ−1(z) + ecty) 6= 1 .
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