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Abstract. We construct algorithms for computation of prices and superhedging strategies for game
options in general discrete time markets with transaction costs both from seller’s (upper arbitrage free
price) and buyer’s (lower arbitrage free price) points of view.

1. Introduction

Game options introduced in [6] were studied by now in scores of papers but their investigation for
markets with transaction costs remains on its initial stages (see [3] and [4]). In this paper we extend
to the game options case the theory of pricing and hedging of options in general discrete markets with
proportional transaction costs in the form which was previously developed for American options case in
[2], [1] and [8].

It is well known that pricing in markets with transaction costs becomes somewhat similar to pricing in
incomplete markets so that hedging arguments from the option seller’s and buyer’s point of view lead to
different prices which determine the whole range of arbitrage free prices. An interesting but not surprising
feature of game options is the almost complete symmetry between the seller’s and the buyer’s pricing
approaches which will be demonstrated clearly in the statements of results and their proofs in this paper.

We will derive representations both for upper (ask, seller’s) and lower (bid, buyer’s) hedging prices of
game options with transaction costs and will exhibit dynamical programming type algorithms for their
computation, as well, as for computation of corresponding seller’s and buyer’s superhedging strategies.
We demonstrate for game options only analogues of some of representations and algorithms from [8]
concentrating on those which allow symmetric expositions of seller’s and buyer’s cases. Others can be
obtained in a similar way and their inclusion here would make this paper too overloaded and more difficult
to read.

Superhedging requires an option seller to invest a large sum into his hedging portfolio and in some
circumstances he may prefer to accept some risk setting up a portfolio with smaller initial amount. In
fact, we will define in Section 5 the shortfall risk both for the seller and the buyer showing that also
in the study of the risk for game options the symmetry between these two market participants can be
preserved. Dynamical programming type algorithms for computation of shortfall risks and corresponding
partial hedging strategies in the setup of game options with transaction costs can be obtained similarly to
[3] where they were derived for American options in binomial markets with the motivation to approximate
the shortfall risk of the continuous time Black-Scholes model.
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2. Preliminaries

We will deal with the same market model as in [8] which consists of a finite probability space Ω with
the σ-field F = 2Ω of all subspaces of Ω and a probability measure P on F giving a positive weight P(ω)
to each ω ∈ Ω. The setup includes also a filtration {∅,Ω} = F0 ⊂ F1 ⊂ ... ⊂ FT = F where T is a
positive integer called the time horizon. It is convenient to denote by Ωt the set of atoms in Ft so that
any Ft-measurable random variable (vector) Z can be identified with a function (vector function) defined
on Ωt and its value at µ ∈ Ωt will be denoted either by Z(µ) or by Zµ. The points of Ωt can be viewed
as vertices of a tree so that an arrow is drawn from µ ∈ Ωt to ν ∈ Ωt+1 if ν ⊂ µ.

The market model consists of a risk-free bond and a risky stock. Without loss of generality, we can
assume that all prices are discounted so that the bond price equals 1 all the time and a position in bonds
is identified with cash holding. On the other hand, the shares of the stock can be traded which involves
proportional transaction costs. This will be represented by bid-ask spreads, i.e. shares can be bought at
an ask price Sa

t or sold at the bid price Sb
t , where Ss

t ≥ Sb
t > 0, t = 0, 1, ..., T are processes adapted to

the filtration {Ft}
T
t=o.

The liquidation value at time t of a portfolio (γ, δ) consisting of an amount γ of cash (or bond) and δ
shares of the stock equals

(2.1) θt(γ, δ) = γ + Sb
t δ

+ − Sa
t δ

−

which in case δ < 0 means that a potfolio owner should spend the amount Sa
t δ

− in order to close his
short position. Observe that fractional numbers of shares are allowed here so that both γ and δ in a
portfolio (γ, δ) could be, in priciple, any real numbers. By definition, a self-financing portfolio strategy is
a predictable process (αt, βt) representing positions in cash (or bonds) and stock at time t, t = 0, 1, ..., T
such that

(2.2) θt(αt − αt+1, βt − βt+1) ≥ 0 ∀t = 0, 1, ..., T − 1

and the set of all such portfolio strategies will be denoted by Φ.
Recall that a game (or Israeli) option (contingent claim) introduced in [6] is defined as a contract

between its seller and buyer such that both have the right to exercise it at any time up to a maturity date
(horizon) T . If the buyer exercises the contract at time t, then he receives from the seller a payment Yt

while if the latter exercises at time t then his payment to the buyer becomes Xt ≥ Yt and the difference
∆t = Xt − Yt is interpreted as a penalty for the contract cancellation. In the presence of transaction
costs there is a difference whether we stipulate that the option to be settled in cash or both in cash
and shares of stock while in the former case an assumption concerning transaction costs in the process
of portfolio liquidation should be made. We adopt here the setup where the payments Xt and Yt are
made both in cash and in shares of the stock and transaction costs take place always when a portfolio

adjustment occurs. Thus, the payments are, in fact, adapted random 2-vectors Xt = (X
(1)
t , X

(2)
t ) and

Yt = (Y
(1)
t , Y

(2)
t ) where the first and the second coordinates represent, respectively, a cash amount to be

payed and a number of stock shares to be delivered and as we allow also fractional numbers of shares
both coordinates can take on any nonnegative real value. The inequality Xt ≥ Yt in the zero transaction
costs case is replaced in our present setup by

(2.3) ∆t = θt(X
(1)
t − Y

(1)
t , X

(2)
t − Y

(2)
t ) ≥ 0

and ∆t is interpreted as a cancellation penalty. We impose also a natural assumption that X
(1)
T = Y

(1)
T

and X
(2)
T = Y

(2)
T , i.e. on the maturity date there is no penalty. Therefore, if the seller cancells the

contract at time s while the buyer exercises at time t the former delivers to the latter a package of cash
and stock shares which can be represented as a 2-vector in the form

(2.4) Qs,t = (Q
(1)
s,t , Q

(2)
s,t ) = XsIs<t + YtIt≤s
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where IA = 1 if an event A occurs and IA = 0 if not. It will be convenient to allow the payment

components X
(1)
t , X

(2)
t and Y

(1)
t , Y

(2)
t to take on any real (and not only nonnegative) values which will

enable us to demonstrate complete duality (symmetry) between the seller’s and the buyer’s positions.
A pair (σ, π) of a stopping time σ ≤ T and of a self-financing strategy π = (αt, βt)

T
t=0 will be called a

superhedging strategy for the seller of the game option with a payoff given by (2.4) if for all t ≤ T ,

(2.5) θσ∧t(ασ∧t −Q
(1)
σ,t , βσ∧t −Q

(2)
σ,t) ≥ 0

where, as usual, c ∧ d = min(c, d) and c ∨ d = max(c, d). The seller’s (ask or upper hedging) price V a

of a game option is defined as the infimum of initial amounts required to start a superhedging strategy
for the seller. Since in order to get α0 amount of cash and β0 shares of stock at time 0 the seller should
spend

(2.6) − θ0(−α0,−β0) = α0 + β+
0 Sa

0 − β−
0 Sb

0

in cash, we can write
(2.7)

V a = inf
σ,π

{−θ0(−α0,−β0) : (σ, π) with π = (αt, βt)
T
t=0 being a superhedging strategy for the seller}.

On the other hand, the buyer may borrow from a bank an amount θ0(−α0,−β0) to purchase a game
option with the payoff (2.4) and starting with the negative valued portfolio (α0, β0) to manage a self-
financing strategy π = (αt, βt)

T
t=0 so that for a given stopping time τ ≤ T and all s ≤ T ,

(2.8) θs∧τ (αs∧τ +Q(1)
s,τ , βs∧τ +Q(2)

s,τ ) ≥ 0.

In this case the pair (τ, π) will be called a superhedging strategy for the buyer. The buyer’s (bid or lower
hedging) price V b of the game option above is defined as the supremum of initial bank loan required to
purchase this game option and to manage a superhedging strategy for the buyer. Thus,
(2.9)

V b = sup
τ,π

{θ0(−α0,−β0) : (τ, π) with π = (αt, βt)
T
t=0 being a superhedging strategy for the buyer}.

It follows from the representations of Theorem 3.1 below that V a ≥ V b.
The goal of this paper is to obtain representations of V a and V b in the form of inf sup expressions

and to construct backward and forward induction algorithms for computation both of these prices and
of corresponding superhedging strategies. These results will be stated precisely in the next section. As
in the case of American options with transaction costs in [2], [1] and [8] precise statements of our results
involve the notion of randomized stopping times and approximate martingales which will be introduced
in the next section.

3. Superhedging and price representations: statements

First, we recall the notion of a randomized stopping time (see [2], [1], [8] and references there) which

is defined as a nonnegative adapted process χ such that
∑T

t=0 χt = 1. The set of all randomized stopping
times will be denoted by X while the set of all usual or pure stopping times will be denoted by T . It
will be convenient to identify each pure stopping time τ with a randomized stopping time χτ such that
χτ
t = I{τ=t} for any t = 0, 1, ..., T , so that we could write T ⊂ X . For any adapted process Z and each

randomized stopping time χ the time-χ value of Z is defined by

(3.1) Zχ =
T
∑

t=0

χtZt.

Considering a game option with a payoff given by (2.4) we write also

(3.2) Qχ,χ̃ =

T
∑

s,t=0

χsχ̃tQs,t
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which is the seller’s payment to the buyer when the former cancells and the latter exercises at randomized
stopping times χ and χ̃, respectively. In particular, if σ and τ are pure stopping times then

(3.3) Qχ,χτ =
T
∑

s=0

χsQs,τ and Qχσ ,χ =
T
∑

t=0

χtQσ,t.

We can also define the ”minimum” and the ”maximum” of two randomized stopping times χ and χ̃ which
are randomized stopping times χ ∧ χ̃ and χ ∨ χ̃ given by

(χ ∧ χ̃)t = χt

∑T
s=t χ̃s + χ̃t

∑T
s=t+1 χs and(3.4)

(χ ∨ χ̃)t = χt

∑t
s=0 χ̃s + χ̃t

∑t−1
s=0 χs.

In particular, if σ and τ are pure stopping times then

(3.5) χσ ∧ χτ = χσ∧τ , χσ ∨ χτ = χσ∨τ

and for any adapted process Z,

(3.6) Zχ∧χτ =
T
∑

s=0

χsZs∧τ , Zχσ∧χ =
T
∑

t=0

χtZσ∧t

and similarly for χ ∨ χτ and χσ ∨ χ.
Next, we introduce the notion of an approximate martingale which is defined for any randomized

stopping time χ as a pair (P, S) of a probability measure P on Ω and of an adapted process S such that
for each t = 0, 1, ..., T ,

(3.7) Sb
t ≤ St ≤ Sa

t and χ∗
t+1S

b
t ≤ EP (S

χ∗

t+1|Ft) ≤ χ∗
t+1S

a
t

where EP is the expectation with respect to P ,

(3.8) χ∗
t =

T
∑

s=t

χs, Z
χ∗

t =
T
∑

s=t

χsZs, χ
∗
T+1 = 0 and Zχ∗

T+1 = 0.

Given a randomized stopping time χ the space of corresponding approximate martingales (P, S) will be
denoted by P̄(χ) and we denote by P(χ) the subspace of P̄(χ) consisting of pairs (P, S) with P being
equivalent to the original (market) probability P.

Now we can formulate some of our results which exhibit ask and bid price representations for game
options.

Theorem 3.1. In the above notations,

V a = minσ∈T maxχ∈X max(P,S)∈P̄(χ) EP

(

Q
(1)
σ,· + SQ

(2)
σ,·

)

χ
(3.9)

= minσ∈T maxχ∈X sup(P,S)∈P(χ) EP

(

Q
(1)
σ,· + SQ

(2)
σ,·

)

χ

and

V b = maxτ∈T minχ∈X min(P,S)∈P̄(χ) EP

(

Q
(1)
·,τ + SQ

(2)
·,τ

)

χ
(3.10)

= maxτ∈T minχ∈X inf(P,S)∈P(χ) EP

(

Q
(1)
·,τ + SQ

(2)
·,τ

)

χ

where Q
(1)
σ,· , Q

(2)
σ,· and Q

(1)
·,τ , Q

(2)
·,τ denote functions on {0, 1, ..., T } whose values at t are obtained by replac-

ing · by t.

In order to exhibit dynamical programming algorithms for computation of V a and V b and induc-
tion algorithms producing corresponding superhedging strategies we have to introduce first some convex
analysis notions and notations (see [7] and [8] for more details). Denote by Θ the family of functions
f : R → R∪{−∞} such that either f ≡ −∞ or f is a (finite) real valued polyhedral (continuous piecewise
linear with finite number of segments) function. If f, g ∈ Θ then, clearly, f∧g, f∨g ∈ Θ. The epigraph of
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f ∈ Θ is defined by epi(f) = {(x, y) ∈ R
2 : x ≥ f(y)}. For any c ≥ d the function h[d,c](y) = cy− − dy+,

clearly, belongs to Θ. Observe that the self-financing condition (2.2) can be rewritten in the form

(3.11) (αt − αt+1, βt − βt+1) ∈ epi(h[Sb

t
,Sa

t
]).

For each f ∈ Θ and c ≥ d there exists a unique function gr[d,c](f) ∈ Θ such that

(3.12) epi(gr[d,c](f)) = epi(h[d,c]) + epi(f).

It is clear from (3.11) and (3.12) that portfolios in epi(gr[Sb

t
,Sa

t
](f)) are precisely those which can be

rebalanced in a self-financing manner at time t to yield a portfolio in epi(f). Denote by Λ the family
of all convex functions in Θ and by Γ the family of concave functions v : R → R ∪ {−∞} which are
polyhedral on their essential domain dom(v) = {x ∈ R : v(x) > −∞}. For any f ∈ Λ the convex duality
sais that

(3.13) f∗(x) = inf
y∈R

(f(y) + xy) ∈ Γ and f(y) = sup
x∈R

(f∗(x)− xy),

the infimum and the supremum above are attained whenever they are finite.
For any y ∈ R, µ ∈ Ωt and t = 0, 1, ..., T define qat (y) = qat (µ, y), q

b
t (y) = qbt (µ, y), r

a
t (y) = rat (µ, y),

rbt (y) = rbt (µ, y) by

qat (y) = X
(1)
t + h[Sb

t
,Sa

t
](y −X

(2)
t ), rat (y) = Y

(1)
t + h[Sb

t
,Sa

t
](y − Y

(2)
t )

qbt (y) = −X
(1)
t + h[Sb

t
,Sa

t
](y +X

(2)
t ), rbt (y) = −Y

(1)
t + h[Sb

t
,Sa

t
](y + Y

(2)
t )

with h[d,c] the same as in (3.11) and (3.12). Observe that if c ≥ d ≥ 0 then either h[d,c] ≡ 0 or h[d,c] is a
monotone decreasing function, and so

(3.14) qat ≥ rat and qbt ≤ rbt .

Introduce also

Gs,t(y) = Q
(1)
s,t + h[Sb

s∧t
,Sa

s∧t
](y −Q

(2)
s,t ) = qas (y)Is<t + rat (y)It≤s and(3.15)

Hs,t(y) = −Q
(1)
s,t + h[Sb

s∧t
,Sa

s∧t
](y +Q

(2)
s,t ) = qbs(y)Is<t + rbt (y)It≤s.

Clearly, the superhedging conditions (2.5) of the seller and (2.8) of the buyer are equivalent to

(3.16) (ασ∧t, βσ∧t) ∈ epi(Gσ,t) for all t = 0, 1, ..., T and

(3.17) (αs∧τ , βs∧τ ) ∈ epi(Hs,τ ) for all s = 0, 1, ..., T,

respectively. Observe also that

(3.18) qat (0) = −qbt (0) = θt(X
(1)
t , X

(2)
t ) and rat (0) = −rbt (0) = θt(Y

(1)
t , Y

(2)
t ).

We recall that X
(1)
T = Y

(1)
T and X

(2)
T = Y

(2)
T , and so qaT = raT and qbT = rbT . The following result provides

dynamical programming algorithms for ask and bid prices computations.

Theorem 3.2. (i) For any x ∈ R, µ ∈ ΩT and σ ∈ T define

(3.19) zµT (x) = wµ
T (x) = raT (µ, x) and zµσ,T (x) = wµ

σ,T (x) = Gσ,T (µ, x).

Next, for t = 1, 2, ..., T and each µ ∈ Ωt−1 define by backward induction

z
µ
t−1 = maxν⊂µ, ν∈Ωt

zνt , z
µ
σ,t−1 = maxν⊂µ, ν∈Ωt

zνσ,t,(3.20)

wµ
t−1 = gr[Sb

t−1(µ),S
a

t−1(µ)]
(zµt−1), wµ

σ,t−1 = gr[Sb

t−1(µ),S
a

t−1(µ)]
(zµσ,t−1),

zµt−1(x) = min
(

qat−1(µ, x),max(rat−1(µ, x), w
µ
t−1(x))

)

and zµσ,t−1(x) = max(Gσ,t−1(µ, x), w
µ
σ,t−1(x)).

Then z0(0) = minσ∈T zσ,0(0) = V a.
(ii) For any x ∈ R, µ ∈ ΩT and τ ∈ T define

(3.21) uµ
T (x) = vµT (x) = rbT (µ, x) and uµ

T,τ (x) = vµT,τ (x) = HT,τ (µ, x).
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Next, for t = 1, 2, ..., T and each µ ∈ Ωt−1 define by the backward induction

u
µ
t−1 = maxν⊂µ, ν∈Ωt

uν
t , u

µ
t−1,τ = maxν⊂µ, ν∈Ωt

uν
t,τ ,(3.22)

vµt−1 = gr[Sb

t−1(µ),S
a

t−1(µ)]
(uµ

t−1), vµt−1,τ = gr[Sb

t−1(µ),S
a

t−1(µ)]
(uµ

t−1,τ ),

uµ
t−1(x) = min

(

rbt−1(µ, x),max(qbt−1(µ, x), v
µ
t−1(x))

)

and uµ
t−1,τ (x) = max(Ht−1,τ (µ, x), v

µ
t−1,τ (x)).

Then u0(0) = maxτ∈T u0,τ (0) = −V b.

Next, we describe inductive constructions of superhedging seller’s and buyer’s strategies using the
functions zt and ut, t = 0, ..., T constructed in Theorem 3.2.

Theorem 3.3. (i) Construct by induction a sequence of (pure) stopping times σt ∈ T and a self-financing
strategy (α, β) such that

(3.23) (αt, βt) ∈ epi(zt) \ epi(q
a
t ) on {t < σt}

for each t = 0, 1, ..., T in the following way. First, take any F0-measurable portfolio (α0, β0) ∈ epi(z0)
and set

σ0 =

{

0 if (α0, β0) ∈ epi(qa0 )
T if (α0, β0) /∈ epi(qa0 ).

Suppose that an Ft-measurable portfolio (αt, βt) ∈ epi(zt) and a stopping time σt ∈ T have already been
constructed for some t = 0, 1, ...T − 1 so that (3.23) holds true. By (3.12) and (3.20),

(αt, βt) ∈ epi(wt) = epi(h[Sb

t
,Sa

t
]) + epi(zt) on {t < σt},

and so there exists an Ft-measurable portfolio (αt+1, βt+1) such that

(αt+1, βt+1) ∈ epi(zt), (αt − αt+1, βt − βt+1) ∈ epi(h[Sb

t
,Sa

t
]) on {t < σt}

and (αt+1, βt+1) = (αt, βt) on {t ≥ σt} which provides the self-financing condition (3.11) both on {t < σt}
and on {t ≥ σt}. By (3.20) it follows also that (αt+1, βt+1) ∈ epi(zt+1) on {t < σt} ⊃ {t + 1 < σt+1}.
Set

σt+1 =







σt if t ≥ σt

t+ 1 if t < σt and (αt+1, βt+1) ∈ epi(qat+1)
T if t < σt and (αt+1, βt+1) /∈ epi(qat+1).

Finally, set σ = σT ∈ T . Then the pair (σ, π) with π = (α, β) constructed by the above algorithm with
(α0, β0) = (V a, 0) is a superhedging strategy for the seller.

(ii) Construct by induction a sequence of (pure) stopping times τt ∈ T and a self-financing strategy
(α, β) such that

(3.24) (αt, βt) ∈ epi(ut) \ epi(r
b
t ) on {t < τt}

for each t = 0, 1, ..., T in the following way. First, take any F0-measurable portfolio (α0, β0) ∈ epi(u0)
and set

τ0 =

{

0 if (α0, β0) ∈ epi(rb0)
T if (α0, β0) /∈ epi(rb0).

Suppose that an Ft-measurable portfolio (αt, βt) ∈ epi(ut) and a stopping time τt ∈ T have already been
constructed for some t = 0, 1, ...T − 1 so that (3.23) holds true. By (3.12) and (3.22),

(αt, βt) ∈ epi(vt) = epi(h[Sb

t
,Sa

t
]) + epi(ut) on {t < τt},

and so there exists an Ft-measurable portfolio (αt+1, βt+1) such that

(αt+1, βt+1) ∈ epi(ut), (αt − αt+1, βt − βt+1) ∈ epi(h[Sb
t
,Sa

t
]) on {t < τt}
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and (αt+1, βt+1) = (αt, βt) on {t ≥ τt} which provides the self-financing condition (3.11) both on {t < τt}
and on {t ≥ τt}. By (3.22) it follows also that (αt+1, βt+1) ∈ epi(ut+1) on {t < τt} ⊃ {t+1 < τt+1}. Set

τt+1 =







τt if t ≥ τt
t+ 1 if t < τt and (αt+1, βt+1) ∈ epi(rbt+1)
T if t < τt and (αt+1, βt+1) /∈ epi(rbt+1).

Finally, set τ = τT ∈ T . Then the pair (τ, π) with π = (α, β) constructed by the above algorithm with
(α0, β0) = (−V b, 0) is a superhedging strategy for the buyer.

4. Superhedging and price representations: proofs

We start with the following result.

Lemma 4.1. (i) The following assertions are equivalent:
(a) (γ, δ) ∈ epi(z0);
(b) There exists a self-financing strategy (α, β) ∈ Φ and a stopping time σ ∈ T such that (α0, β0) =

(γ, δ) and (3.16) holds true;
(c) There exists a superhedging strategy (σ, π), σ ∈ T , π = (αt, βt)

T
t=0 ∈ Φ for the seller such that

(α0, β0) = (γ, δ).
(ii) The following assertions are equivalent:
(d) (γ, δ) ∈ epi(u0);
(e) There exists a self-financing strategy (α, β) ∈ Φ and a stopping time τ ∈ T such that (α0, β0) =

(γ, δ) and (3.17) holds true;
(f) There exists a superhedging strategy (τ, π), τ ∈ T , π = (αt, βt)

T
t=0 ∈ Φ for the buyer such that

(α0, β0) = (γ, δ).

Proof. (i) Suppose that (γ, δ) ∈ epi(z0). Set (α0, β0) = (γ, δ) and construct a self-financing strategy
π = (αt, βt)

T
t=0 and a stopping time σ inductively as described in Theorem 3.3(i). In order to obtain

(3.16) we show first that

(4.1) (ασ, βσ) ∈ epi(qaσ).

Indeed, if σ = σT = t < T then by the construction σT = σT−1 = · · · = σt, t − 1 < σt−1 and (αt, βt) ∈
epi(qat ). If σ = σT = T then we also obtain that

(4.2) (αT , βT ) ∈ epi(qaT )

since for otherwise by the construction we must have σT−1 = σT = T . Then T −1 < σT−1 and on this set
(event) by construction (αT , βT ) ∈ epi(zT−1) ⊂ epi(zT ) =epi(qaT ) since zT = raT = qaT , and so (4.2) holds
true completing the proof of (4.1), as well. Since Gσ,t = qaσ if σ < t by (3.15) then (3.16) follows from (4.1)
when σ < t. If σ = t then Gσ,t = rat = raσ ≤ qaσ, and so (4.1) implies (3.16) in this case, as well. Next,
assume that t < σ = σT and observe that by the construction {t < σ} ⊂ {t < σt} for all t = 0, 1, ..., T .
On {t < σt} we have (αt, βt) ∈ epi(zt). But by (3.20) either zt = qat ≥ rat or zt = max(rat , wt) ≥ rat and
in both cases (αt, βt) ∈ epi(rat ) which yields (3.16) since Gσ,t = rat when t < σ.

Next, suppose that (b) holds true. Then (c) follows since (3.16) is equivalent to the seller’s superhedging
condition (2.5).

Suppose now that (σ, π), σ ∈ T , π = (αt, βt)
T
t=0 is a superhedging strategy for the seller such that

(α0, β0) = (γ, δ). Then (3.16) holds true. We prove next by the backward induction that

(4.3) (ασ∧t, βσ∧t) ∈ epi(zσ∧t).

Observe that either Gσ,T = raT = zT if σ = T or Gσ,T = qaσ ≥ zσ if σ < T . In both cases epi(Gσ,T ) ⊂
epi(zσ∧T ) and (4.3) with t = T follows from (3.16). Now suppose that (4.3) holds true for some t ∈
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{1, 2, ..., T }, i.e. (αt, βt) ∈ epi(zt). Since (ασ∧t, βσ∧t) is Fσ∧(t−1)-measurable it follows by (3.20) that
(ασ∧t, βσ∧t) ∈ epi (zσ∧(t−1)). Because the strategy is self-financing, we have by (3.11) that

(ασ∧(t−1) − ασ∧t, βσ∧(t−1) − βσ∧t) ∈ epi(h[Sb

σ∧(t−1)
,Sa

σ∧(t−1)
]),

obtaining by (3.20) that

(ασ∧(t−1), βσ∧(t−1)) ∈ epi(h[Sb

σ∧(t−1)
,Sa

σ∧(t−1)
]) + epi(zσ∧(t−1)) = epi(wσ∧(t−1)).

Furthermore, by the superhedging condition (3.16),

(ασ∧(t−1), βσ∧(t−1)) ∈ epi(Gσ,t−1),

and so,

(ασ∧(t−1), βσ∧(t−1)) ∈ epi(max(Gσ,t−1, wσ∧(t−1)))

⊂ epi(max(ra
σ∧(t−1), wσ∧(t−1))) ⊂ epi(zσ∧(t−1))

since zσ∧(t−1) ≤ max(ra
σ∧(t−1), wσ∧(t−1)) by (3.20), completing the induction step. Now taking t = 0 in

(4.3) we obtain the assertion (a) proving the statement (i).
(ii) Suppose that (γ, δ) ∈ epi(u0). Set (α0, β0) = (γ, δ) and construct a self-financing strategy π =

(αt, βt)
T
t=0 and a stopping time τ inductively as described in Theorem 3.3(ii). In order to obtain (3.17)

we show first that

(4.4) (ατ , βτ ) ∈ epi(rbτ ).

Indeed, if τ = τT = t < T then by the construction τT = τT−1 = · · · = τt, t − 1 < τt−1 and (αt, βt) ∈
epi(rbt ). If τ = τT = T then we also obtain that

(4.5) (αT , βT ) ∈ epi(rbT )

since for otherwise by the construction we must have τT−1 = τT = T . Then T − 1 < σT−1 and on this set
(event) by the construction (αT , βT ) ∈ epi(uT−1) ⊂ epi(uT ) =epi(rbT ) since uT = rbT , and so (4.5) holds
true completing the proof of (4.4), as well. Since Hs,τ = rbτ if τ ≤ s by (3.15) then (3.17) follows from
(4.4) when τ ≤ s. Next, assume that s < τ = τT and observe that by the construction {s < τ} ⊂ {s < τs}
for all s = 0, 1, ..., T . On {s < τs} we have (αs, βs) ∈ epi(us). But us ≥ qbs by (3.22), and so (αs, βs) ∈
epi(qbs) on {s < τs}, which yields (3.17) since Hs,τ = qbs when s < τ .

Next, suppose that (e) holds true. Then (f) follows since (3.17) is equivalent to the buyer’s superhedging
condition (2.8).

Suppose now that (τ, π), τ ∈ T , π = (αt, βt)
T
t=0 is a superhedging strategy for the buyer such that

(α0, β0) = (γ, δ). Then (3.17) holds true. We prove next by the backward induction that

(4.6) (αs∧τ , βs∧τ ) ∈ epi(us∧τ ).

Observe that either HT,τ = rbT = uT if τ = T or HT,τ = rbτ ≥ uτ if τ < T . In both cases epi(HT,τ ) ⊂
epi(uT∧τ ) and (4.6) with s = T follows from (3.17). Now suppose that (4.6) holds true for some s ∈
{1, 2, ..., T }, i.e. (αs, βs) ∈ epi(us). Since (αs∧τ , βs∧τ ) is F(s−1)∧τ -measurable it follows by (3.22) that
(αs∧τ , βs∧τ ) ∈ epi(u(s−1)∧τ ). Because the strategy is self-financing, we have by (3.11) that

(α(s−1)∧τ − αs∧τ , β(s−1)∧τ − βs∧τ ) ∈ epi(h[Sb

(s−1)∧τ
,Sa

(s−1)∧τ
]),

obtaining by (3.22) that

(α(s−1)∧τ , β(s−1)∧τ ) ∈ epi(h[Sb

(s−1)∧τ
,Sa

(s−1)∧τ
]) + epi(u(s−1)∧τ ) = epi(v(s−1)∧τ ).

Furthermore, by the superhedging condition (3.17),

(α(s−1)∧τ , β(s−1)∧τ ) ∈ epi(Hs−1,τ ),
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and so,

(α(s−1)∧τ , β(s−1)∧τ ) ∈ epi(max(Hs−1,τ , v(s−1)∧τ ))

⊂ epi(max(qb(s−1)∧τ
, v(s−1)∧τ )) ⊂ epi(u(s−1)∧τ )

since Hs−1,τ ≥ qb(s−1)∧τ
and u(s−1)∧τ ≤ max(qb(s−1)∧τ

, v(s−1)∧τ ) by (3.22), completing the induction step.

Now taking s = 0 in (4.6) we obtain the assertion (d) proving the statement (ii). �

Now we are ready to prove Theorems 3.1-3.3. In view of Lemma 4.1(i) it follows from (2.7) that

V a = min{−θ0(−γ,−δ) : (γ, δ) ∈ epi(z0)}(4.7)

≤ min{−θ0(−γ, 0) : (γ, 0) ∈ epi(z0)} ≤ min{γ : (γ, 0) ∈ epi(z0)} = z0(0).

In order to derive the inequality in the other direction we will use zσ,s, s = 0, 1, ..., T constructed in
Theorem 3.2(i) for any σ ∈ T . First, we show by the backward induction that for all s = 0, 1, ..., T ,

(4.8) zσ,s ≥ zσ∧s.

Indeed, for s = T we have zσ,T = Gσ,T ≥ zσ∧T which is clear from the definitions when σ = T while if
σ < T then zσ,T = qaσ ≥ zσ. Suppose that (4.8) holds true for s = T, T − 1, ..., t. In order to prove it for
s = t− 1 we observe that by (3.20),

zσ,t−1 ≥ Gσ,t−1 = qaσ ≥ zσ = zσ∧(t−1)

on the set {σ < t − 1}. On the other hand, on the set {σ ≥ t − 1} by the definition and the induction
hypothesis zσ,t−1 ≥ zt−1. This together with the monotonicity of the operator gr[d,c] yields that wσ,t−1 ≥
wt−1. Hence, on {σ ≥ t− 1} by (3.20),

zµt−1 ≤ max(rat−1(µ, x), w
µ
t−1(x)) ≤ max(Gσ,t−1(µ, r), w

µ
σ,t−1) = zµσ,t−1

completing the induction step, and so (4.8) is valid for all s = 0, 1, ..., T .
For each σ ∈ T set

(4.9)

V a
σ = inf

π
{−θ0(−α0,−β0) : (σ, π) with π = (αt, βt)

T
t=0 being a superhedging strategy for the seller}.

It is easy to see that V a
σ is the seller’s (ask) price of the American option with the payoff process

Qσ,t = (Q
(1)
σ,t , Q

(2)
σ,t), t = 0, 1, ..., T (see (2.4)) and the same transactions costs setup as before. Hence, we

can rely on Theorem 3.3 from [8] in order to claim that

V a
σ = maxχ∈X max(P,S)∈P̄(χ) EP (Q

(1)
σ,· + SQ

(2)
σ,· )χ(4.10)

= maxχ∈X sup(P,S)∈P(χ) EP (Q
(1)
σ,· + SQ

(2)
σ,· )χ = zσ,0(0).

Combining (2.7), (4.8) and (4.10) we obtain that

V a = minσ∈T V a
σ = minσ∈T maxχ∈X max(P,S)∈P̄(χ) EP (Q

(1)
σ,· + SQ

(2)
σ,· )χ(4.11)

= minσ∈T maxχ∈X sup(P,S)∈P(χ) EP (Q
(1)
σ,· + SQ

(2)
σ,· )χ = minσ∈T zσ,0(0) ≥ z0(0).

Now (4.7) together with (4.11) yields both (3.9) from Theorem 3.1 and the conclusion of Theorem 3.2(i).
It follows from the equality V a = z0(0) that (V

a, 0) ∈ epi(z0). On the other hand, we showed already
in the proof of Lemma 4.1(i) that any pair (σ, π) of σ ∈ T and π = (αt, βt)

T
t=0 ∈ Φ with (α0, β0) ∈ epi(z0)

constructed by the algorithm of Theorem 3.3(i) is a superhedging strategy for the seller. Hence, the
conclusion of Theorem 3.3(i) follows, completing the proof of our results concerning the seller. �

In order to obtain our results concerning the buyer we will rely on the duality of the seller and the
buyer positions in the setup of game options. Indeed, since negative payoffs are also allowed we can view
now the buyer as a seller of the new game option with the payoff (2-vector) function

Q̂s,t = (Q̂
(1)
s,t , Q̂

(2)
s,t ) = −XsIs<t − YsIt≤s = −Qs,t
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while the former seller becomes a buyer of this new option. We observe the slight difference here that
when s = t the payoff −Ys ≥ −Xs includes ”the penalty” but this convention does not influence the

results. Now we see that replacing Q
(1)
s,τ and Q

(2)
s,τ by Q̂

(1)
s,τ and Q̂

(2)
s,τ in the superhedging condition (2.8)

transforms it into the form (2.5) and writing (2.8) for V̂ b = −V b we transform (2.8) into the form (2.7).

Next, Hs,t in (3.15) will have the form of Gs,t there if we replace Q
(1)
s,t and Q

(2)
s,t there by Q̂

(1)
s,t and Q̂

(2)
s,t ,

respectively. Furthermore, (3.10) will have the form of (3.9) if we rewrite it for V̂ b, Q̂
(1)
·,τ , Q̂

(2)
·,τ in place

of V b, Q
(1)
·,τ , Q

(2)
·,τ , respectively. Taking into account these arguments we derive (3.10) and the assertions

(ii) of Theorems 3.2 and 3.3 from (3.9) and from the corresponding assertions (i) of these theorems. �

5. Shortfall risk and partial hedging

In this section we discuss the shortfall risk for game options with transaction costs. The shortfall risk
of the seller using a cancellation stopping time σ and a self-financing strategy π = (αt, βt)

T
t=0 is defined

by

(5.1) Ra(σ, π) = sup
τ∈T

EP

(

θσ∧τ (ασ∧τ −Q(1)
σ,τ , βσ∧τ −Q(2)

σ,τ )
)−

where a− = −min(a, 0). The shortfall risk of the seller wishing to spend no more than an amount x in
order to set his (partial) hedging portfolio is defined by

(5.2) Ra(x) = inf
σ∈T , π

{R(σ, π) : π = (αt, βt)
T
t=0 is self-financing and − θ0(−α0,−β0) ≤ x}.

Similarly, we can define the shortfall risk of the buyer using an exercise stopping time τ and a self-
financing portfolio strategy π = (αt, βt)

T
t=0 by

(5.3) Rb(τ, π) = sup
σ∈T

EP

(

θσ∧τ (ασ∧τ +Q(1)
σ,τ , βσ∧τ +Q(2)

σ,τ )
)−

where a− = −min(a, 0). The shortfall risk of the buyer who takes a loan in the amount at least x to pay
it for the option and to set a (partial) hedging portfolio is defined by

(5.4) Rb(x) = inf
τ∈T , π

{Rb(τ, π) : π = (αt, βt)
T
t=0 is self-financing and θ0(−α0,−β0) ≥ x}.

The shortfall risk of the buyer measures the maximal expected amount which may be needed to settle
buyer’s bank loan in addition to his portfolio liquidation value and the option payoff he receives from the
seller.

Observe that usually V a > V b and in this case if the buyer agrees to pay for the option the upper
hedging price V a (or any price higher than V b) he should take into account the shortfall risk while the
same is true concerning the seller if he agrees to sell the option for the lower hedging price (or any price
lower than V a). It is not difficult to see that in the study of the shortfall risk pure stopping times suffice
and there is no need to deal with randomized ones which would lead actually to the same values of the
shorfall risk in view of linearity of corresponding expressions. Some dynamical programming algorithms
for computation of shortfall risks and corresponding partial hedging strategies can be constructed for
game options with proportional transaction costs in finite discrete markets similarly to [3] where such
algorithms were described for binomial models of American options but their extension to game options
is also possible (see Remark 6.3 in [3]) which was done for frictionless multinomial markets in [5].
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