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Financial markets are a classical example of complex systems as they are compound by many
interacting stocks. As such, we can obtain a surprisingly good description of their structure by
making the rough simplification of binary daily returns. Spin glass models have been applied and
gave some valuable results but at the price of restrictive assumptions on the market dynamics or
they are agent-based models with rules designed in order to recover some empirical behaviors. Here
we show that the pairwise model is actually a statistically consistent model with the observed first
and second moments of the stocks orientation without making such restrictive assumptions. This
is done with an approach only based on empirical data of price returns. Our data analysis of six
major indices suggests that the actual interaction structure may be thought as an Ising model on
a complex network with interaction strengths scaling as the inverse of the system size. This has
potentially important implications since many properties of such a model are already known and
some techniques of the spin glass theory can be straightforwardly applied. Typical behaviors, as
multiple equilibria or metastable states, different characteristic time scales, spatial patterns, order-
disorder, could find an explanation in this picture.

PACS numbers: 89.65.Gh, 89.75.Fb, 64.60.Cn, 64.60.De

I. INTRODUCTION

A highly interesting feature of complex systems is that
sometimes the microscopic details of interactions are not
necessary to explain the observed macroscopic structures
(at least qualitatively). The most famous examples are
the Ising and spin glasses models where the interactions
are taken as constant or randomly distributed in a given
neighbourhood. It is amazing that the pairwise max-
imum entropy model also describes neural populations
[1]. This suggests that the most relevant properties rul-
ing the macroscopic behaviours of such complex systems
are not the nature of the microscopic entities but are the
order of interactions, their range and the topology.
One also finds collective phenomena in finance [2, 3],

non-random correlations [4] and complex structures [5,
6]. Such phenomena can occur in systems compound
by many interacting entities (where interaction is taken
at the larger sense of mutual influence). Moreover,
as recently observed [7], the financial and neural net-
works have topological similarities (modular, hierarchi-
cal, small-world organization highlighted by an asset tree
based approach). In this view, the spin-glass paradigm
seems to be a seducing candidate to explain the market
structure. Spin glasses were already applied to finance
but with the restricting assumption that the market
dynamics follows the soft-spins Langevin dynamics [8].
There are also Ising like models which are agent-based
models with specific rules such as ”do what your neigh-

bors do” or more complex dynamical rules [9–11]. The
latter approach is thus a different one that the Rosenow’s
(or the present) approach where the elementary entities
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are the stocks and not the traders (the most accessible
observables are the price returns).
The aim of this work is to show that market behav-

ior can be explained without such hypothetical rules
and that the aforementioned collective phenomena result
from the mutual influences of the underlying constitutive
entities, the stocks (in the same spirit of the characteri-
zation of the collective phenomena in neural networks by
neurons interaction without using other material than
their activity time series [1]). We emphasize that this
approach is a data-based approach. We do not introduce
any rules or dynamical restriction. We only require the
model fits first and second empirical moments. The rea-
son is that the underlying microscopic details seem to be
unnecessary to the macroscopic description of such phe-
nomena. Indeed macroscopic behaviors in magnetic ma-
terials and in neural networks are consistently described
by maximum entropy models even though electrons and
neurons are undoubtedly completely different elementary
entities at the individual scale (as well as their micro-
scopic dynamics). Furthermore, the agent-based models
can reveal interesting behavioral patterns but since such
different dynamics as the neurons potential activity dy-
namics and spin dynamics can lead to the same macro-
scopic patterns, it seems natural to propose a comple-
mentary statistical and data-based approach allowing to
relax almost any assumption.
Here, we consider stocks as economic entities influenc-

ing each other. The interaction process itself is not de-
tailed. Instead, we propose a derivation of the pairwise
model only based on the (incomplete) information em-
bedded in the data without restricting assumption on an
underlying dynamics. The only (rough) assumption that
we made is the prices binarizing to interpret the daily
movement as a bullish (or bearish) orientation. Such
a simplification has already shown its power in neural
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networks and magnetic materials (at least in structure
studies) where the complex interaction process is approx-
imated by a pairwise model and the relevant variables
(action potential and spin) are binarized. In this work
we provide evidence that an Ising model on a complex
network can accurately describe the stock market. We
show that almost all the interaction strengths are Gaus-
sian random variables, that Gaussian influences are com-
patible with non-Gaussian eigenvalues of the returns cor-
relation matrix and that the mean influence scales as a
power close to −1 of the system size. Furthermore frus-
tration seems to be a key property since approximately
half of the interaction strengths are negative. We also
propose an economic interpretation based on the mutual
influence scheme developed in [12]. Furthermore the in-
teraction strengths can be thought as incentive since they
are related to the Hessian matrix of the utility function
[13].
With these features, we conclude that the proposed

model may fall into the class of the spin glass exact
mean field models. We also show that we can recover the
largest (non-Gaussian) eigenvalue of the returns correla-
tion matrix corresponding to the market eigenmode [4],
making the link with the random matrix approach. This
mapping and the first clue of the recovering of the mar-
ket eigenmode suggest that a link to critical phenomena
can be done in this paradigm. Moreover the topologi-
cal similarities between the market and neural networks
can find their origin in this common statistical model.
Other properties as the existence of hierarchical struc-
tures [5, 6], possibility of the order-disorder transition
and synchronization [2, 3] can potentially be explained
by the pairwise paradigm.

II. THE MODEL

A. Inferred distribution

Our aim is to set up a model describing the market
state and its structure only based on statistical consider-
ations. This requires a way to infer the probability dis-
tribution in order to get the observables (here, the asso-
ciated moments). The model will also allow the study of
the market structure. All these quantities will be defined
below. We consider a set of N market indices or N stocks
with binary states si (si = ±1 for all i = 1, · · · , N).
A system configuration will be described by a vector
s = (s1, · · · , sN ). The binary variables will be equal to
1 if the associated closing price is larger than (or equal)
to the opening one and equal to −1 if not. We choose
open-to-close rather than close-to-close returns to avoid
over-night effect and the weekend gap (Friday-Monday
closings). A configuration s is a binary version of the
stock returns. Such a simplification of the returns is
made to study the market structure and will be justified
a posteriori if the results are consistent with the data. A
first clue that is not a too rough approximation is that it

preserves the market eigen-mode (largest eigen-value of
the price-returns covariance matrix) [4] as illustrated in
Fig-1
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FIG. 1. Probability distribution of the eigenvalues of the bi-
narized returns correlation matrix for the Dow Jones index.
The correlation matrix is extracted from 30 assets during the
period 2001-2011. The market-mode is pointed out by the
arrow.

Another motivation of this approximation is that the
resulting binary pairwise model allows collective phenom-
ena which are observed in the market. We will discuss the
description of the collective phenomena (structure reor-
ganization, synchronization, etc.) by this pairwise model
in a forthcoming work.
We seek to establish the less structured model explain-

ing only the measured mean orientations qi and instan-
taneous pairwise correlations qkl in terms of theoretical
moments 〈si〉 and 〈sksl〉 without making any further as-
sumption. The brackets 〈·〉 denote the average with re-
spect to the unknown distribution p(s). As the entropy
of a distribution measures the randomness or the lack
of interaction among binary variables, a way to infer
such probability distribution knowing the mean orienta-
tions and correlations is the maximum entropy principle
(MEP). Jaynes showed how to derive the probability dis-
tribution using the maximum entropy principle [14]. It
consists in the following constrained maximization

maxS(s) = −
∑

{s}

p(s) log p(s) (1)

s.t
∑

{s}

p(s) = 1,
∑

{s}

p(s)si = qi,
∑

{s}

p(s)sisj = qij

The resulting 2-agents distribution p2(s) is the follow-
ing

p2(s) = Z−1 exp





1

2

N
∑

i,j

Jijsisj +
N
∑

i=1

hisi



 ≡ e−H(s)

Z
(2)

where Jij and hi are the Lagrange multipliers and Z a
normalizing constant (the partition function). They can
be expressed in terms of partial derivatives of the entropy
as
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∂S(s)

∂qi
= −hi

∂S(s)

∂qij
= −Jij (3)

Thus preferences are conjugated to mean orientations
and pairwise influences to pairwise correlations.
The cumulants are obtained from this model and we

give their relation to the interaction strengths. As the
statistical model (2) is expressed as a Gibbs distribution,
we have the relations

〈si1 . . . siN 〉c = ∂N lnZ/∂hi1 . . . ∂hiN (4)

where 〈·〉c is the cumulant average [15]. This relation
gives the link between J and the pairwise correlations. If
the partition function Z cannot be explicitly computed,
we can use the Plefka series [16] or a variational cumulant
expansion [17].
Finally, we test if the higher order influences should

be ruled out. We proceed by using the multi-information
criterion [1, 18]. We sketch here the basic idea of this
criterion. Considering a financial network of N enti-
ties, one can obtain the maximum entropy distributions
pk(s) that are consistent with the kth-order correlations
(for any k = 1, · · · , N) like in (1). The case k = N
is an exact description of the financial network. Thus
the entropies Sk = S[pk] of these distributions decrease
with increasing k toward the true entropy S = S[pN ]
since more correlation reduces the entropy. The multi-
information IN ≡ DKL (pN ||p1) is a measure of the total
amount of correlations in the system. Thus if the ration
I2/IN = (S1 − S2)/(S1 − SN ) is close to 1 then pairwise
correlations provide an effective description of the cor-
relation structure (Where DKL is the Kullback-Leibler
divergence). For a set of 8 European indices, we obtain
I2/IN = 98.2% which means that pairwise correlations
represent most of the correlations. For the Dow Jones
(minute sampling time-scale and 3× 104 points), we ob-
tain I2/IN = 95.7% in average. In the latter case we
consider 20 sets of 8 randomly chosen stocks and 20 sets
of 10 randomly chosen stocks (values for which direct
sampling of the distribution gives a good estimate); the
results are illustrated in Fig-2.
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FIG. 2. Multi-information ratio I2/IN for 20 sets of 8 ran-
domly chosen stocks (left) and for 20 sets of 10 randomly
chosen stocks. Sampling time-scale is the minute, the sample
length is 3× 104 points and parameters were estimated with
a regularized pseudo-maximum likelihood method.

B. Interpretation

The Gibbs distribution (2) is similar to those given by
Brock and Durlauf in the discrete choice problem [12] and
in stochastic models in macroeconomics [19], but also to
the Ising model used in description of magnetic materi-
als and neural networks [1, 20]. This is also a special
case of Markov random fields [21]. We emphasize that
the Gibbs distribution and the concept of information
entropy naturally arise from the stochastic modeling in
economics. This is greatly discussed in [19]. We inter-
pret the objective function H(s) defined by the MEP as
follows. Pairwise interactions between economic agents
are modeled by interaction strengths Jij (which describe
how i and j influence each other). They can be thought
as a measure of the degree of comovement (coherence)
of a time-series pair. As possible underlying causes of
those interactions, we may think to the economic back-
ground, company management, traders strategies, etc.
This should be investigated in an econometrical study.
The interaction matrix J is set to be symmetric in this
first approach. There is disagreement or conflict between
entities when the weighted product of their orientations
Jijsisj is negative. If two shares are supposed to move
together (Jij > 0), a conflicting situation is the one
where they do not have the same orientation (bearish
or bullish).

We include the idiosyncratic preferences or individual
biases of stocks, here the willing to be bullish or not.
These Lagrange multipliers hi can also be interpreted
as the external influences on entities i induced by the
macroeconomic background. By example a company can
prosper and make benefits during a crisis period and the
associated stock can still fall simultaneously because the
investors are negatively influenced by the economic back-
ground. The stock will have a propensity to fall even if
profits are made. If the orientation of the stock satisfies
its preference, hisi will be positive. The total conflict of
the system is then given by

H(s) = −1

2

N
∑

i=1

N
∑

j=1

Jij sisj −
N
∑

i=1

hisi (5)

We interpret H(s) as the opposite of the so-called util-
ity function U(s) = −H(s) with a pairwise interacting
and idiosyncratic parts [12]. Consequently the interac-
tion strengths can be viewed as the incentive complemen-
tarities. Indeed we have ∂2U/∂si∂sj = Jij . The larger
Jijsisj , the stronger the strategic interaction between i
and j.

We emphasize that this Ising like model is forced upon
us as the statistically consistent model with the measured
orientations and correlations. It is not an analogy based
on specific hypotheses about the market dynamics and it
necessarily implies a multivariate picture of the markets
as it should be.
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C. Parameters estimation

The parameters {Jij , hi} can potentially be exactly
computed by performing explicitly the maximization (1)
so that the theoretical moments 〈si〉 and 〈sisj〉 match
the empirical ones qi and qij . This method requires the
computation of 2N terms. If this number is too large, the
computation is unfeasible and we can benefit from one of
the methods described in [22]. The parameters should be
valued such that the constraints are satisfied in (1). Gen-
erally, redrawing the parameters from their distribution
will lead to wrong values of the first and second moments.
Therefore knowing only the functional form of the distri-
bution is insufficient, we must know their exact values.
In this paper we use a second order mean-field inversion
[22] (consistently with our results). Generally this inver-
sion method requires ten or so entities and a sample size
T larger than the number of entities N . In the following
we have T > 20N and N > 10. This inversion technique,
to infer the interaction strengths from the data, is based
on the following relation (i 6= j)

(C−1)ij = −Jij − J2
ij qiqj (6)

Given the relation (6), if the data are noise dressed,
the inferred interaction matrix will also be noise dressed.
Moreover, as the proposed model is a maximum entropy
model, the parameters should be adjusted to satisfy the
constraints in (1). Thus any inversion method will be
noise sensitive. Last, we note that the MEP is also
sample-dependent since the Lagrange multipliers are fit-
ted to recover the first and second moments. It does
not necessarily mean that the Jij are time-dependent but
it seems intuitive that they are actually time-dependent
since a company can die out, be restructured or removed
from its index.

III. MEAN FIELD MAPPING

The previous model can be thought as an Ising spin
glass on a complex network [23]. Indeed the objective
function of this model (equivalent to the Ising Hamilto-
nian) can be rewritten as

H(s) = −1

2

N
∑

i=1

N
∑

j=1

JijAij sisj −
N
∑

i=1

hisi (7)

where Aij are the entries of the adjacency matrix,
equal to one if the nodes i and j are connected and equal
to zero if they are not. For a complete graph (Aij = 1
for all pairs) the Thouless-Anderson-Palmer (TAP) equa-
tions are exact if the number of nodes tends to infinity
and if the Jij are independent and identically distributed
(IID) gaussian random variables with mean and variance
scaling as N−1 [16, 23]. We can check if the observed

mean orientations are well approximated by the TAP
equations

〈si〉c = tanh



hi +
∑

j

Jij〈sj〉c −
∑

j

J2
ij〈si〉c[1− 〈sj〉2c ]





(8)
Below, we show that the first and second empirical cu-

mulants are indeed well approximated by the TAP mean-
field for different market indices and for different system
sizes. We consider the N stocks of the BEL20, AEX,
DAX, Dow Jones, CAC40 and S&P100 indices respec-
tively during T = 1050, T = 1400, T = 1550 T = 2500,
T = 1550 and T = 2500 trading days, such that T ≫ N
(a trading year is usually about 250 trading days). All
these data can be downloaded from the web site Yahoo!
Finance [24]. We compute the TAP mean orientations
of each stock in this large time window and we compare
them with their empirical mean values. The results are
illustrated in Fig-3.
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FIG. 3. Comparison of the TAP mean orientations (circles)
and the empirical ones. The straight line shows equality. Re-
spectively from top left to bottom right (with increasing sys-
tem size): BEL20, AEX, DAX, DJ, CAC, S&P100.

The TAP mean orientations are indeed a good descrip-
tion of the empirical mean orientations, the typical rela-
tive deviation is less than 1%. As a further test, we also
compare the empirical variances of the orientations to
their TAP values. The variances of the orientations are
〈s2i 〉c = 1− 〈si〉2c inserting the TAP approximation leads

to 〈s2i 〉c = 1 − tanh2(hi +
∑

j Jij〈sj〉c −
∑

j J
2
ij〈si〉c[1 −

〈sj〉2c ]).
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The variances are also well approximated by the TAP
variances, the typical relative deviation is about 1%. Us-
ing the error propagation, one can evaluate the error
on the estimation of the third order cumulants 〈s3i 〉c =
2(〈si〉3c − 〈si〉c) and higher order cumulants which are
expressed in terms of the TAP orientations. The TAP
mean field method is exact, in the so-called thermody-
namic limit N → ∞, for the infinite-range interactions
provided that the following condition is satisfied [16]

x ≡ 1−(1−2Q2+Q4) > 0 with Qν = N−1
N
∑

i=1

qνi (9)

We checked that this condition is fulfilled for each of
the previous data sets, our use of the TAP equation was
justified. We showed that an Ising model on a complex
graph can accurately describe the stock market for dif-
ferent and typical system sizes as the TAP equations give
results consistent with the data.
The good adequation between empirical and TAP cu-

mulants suggests that the market network should be like
a complete graph, with pairwise influences which should
be Gaussian ones and scale as the inverse of the system
size. However, the real financial network may be not
actually a complete graph even if the only null entries
of the interaction matrix are the diagonal ones. Indeed
one knows that a part of the correlations is noise [4].
Moreover, finite size sample also implies errors in the pa-
rameters estimation. It would be nice if, in addition,
the interaction matrix entries Jij were actually gaussian
random variables as needed by the TAP mean-field ap-
proach. This would make the link with the Gaussian
spin glass theory [20]. We want to emphasize that one
should not confuse the interaction matrix with the covari-
ance matrix of the returns. The fact that J entries are
normally distributed does not mean that there are only
noisy movements in the market. The J matrix describes
the pairwise interactions, not directly the correlations.
We illustrated in Fig-4 the empirical frequencies of the

estimated mutual influences. We consider the CAC in-
dex and a set of 116 NYSE stocks observed during 4800
trading days (available at www.jponnela.com). The fre-
quencies distribution does not seem to be exactly Gaus-
sian since the upper tail is fatter than in the Gaussian
distribution. To formalize this observation, we first use
a qualitative normality test. We compare the empirical
1000-quantiles (permilles) with the theoretical gaussian
1000-quantiles. If the Jij are Gaussian random variables,
we should obtain a linear relation between these both
quantities. We illustrated our results in Fig-5.
We tested the normality of the interaction strengths

for the previous six market indices. We obtained similar
results than those illustrated in Fig-5. The upper tail of
the empirical distribution is also found fatter than the
Gaussian one but the bulk of the distribution seems to
be Gaussian. Then we use the χ2 and the Jarque-Bera
statistical normality tests on the J upper triangular part
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FIG. 4. Top: Empirical frequencies of the pairwise influences
for the DJ (minute time-scale) and bottom: the Onnela’s set .
The dashed line is a Gaussian fit of the influences frequencies
distribution amputated of its upper tails.
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FIG. 5. Comparison of the S&P100 empirical 1000-quantiles
(circles) and the theoretical ones. The straight line shows
equality. Respectively from left to right: all the 4950 entries
of the J matrix and the results without the last 200 entries.

amputated of its upper tail. They do not lead to the
rejection of the null hypothesis that the bulk of the un-
derlying distribution is a Gaussian one.

Last, to evaluate the importance of the noise in the
estimation, we simulate the binary time-series (for differ-
ent sizes and sample lengths) with the maximum entropy
conditional flipping probability p(si,t = −si,t−1|Ht)
given the state at time t. The influence matrix was taken
homogenous with all entries equal to the empirical mean
J̄ij of the considered index in those simulations. We then
estimate the influence matrix with those artificial data.
Ideally, the standard deviation of the estimated artificial
influences σnoise should be much smaller than the one of
the real influences σJ . The results are reported in Table-
I. Depending on the sample length, the noise seems to be
significative but not the dominant part of the estimation
excepted for large system size.

However it is not obvious that the upper tail can be
neglected or not (one knows that one cannot neglect the
non-Gaussian part of the correlation matrix). The non-
Gaussian part of the distribution may also be an inference
artefact (since less than 10% of the influences are non-
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TABLE I. Quantification of the noisy part of the variance of
the inferred mutual influences.

Index sample length (T ) σnoise/σJ

AEX(daily) 1.4× 103 0.22

DJ(min) 3.0× 104 0.24

DJ(daily) 2.5× 103 0.31

Onnela(daily) 4.8× 103 0.74

Cac(daily) 1.5× 103 0.75

Gaussian ones). We are tempted to let the door open to
the case of Gaussian influences. Indeed, in addition to the
previous evidence of TAP matching, the Gaussian inter-
actions are compatible with the observed market eigen-
mode. Consider the simplest situation where the Jij are
really IID Gaussian random variables with zero mean
(thus including the frustration since half of the pairwise
influences are negative). The largest eigenvalues of the
returns covariance matrix are linked to the eigenvalues of
the J matrix by the relation [1− Jλ + J2]−1 in the mean
field approach, where Jλ is an eigenvalue of the J matrix
and J2 ≡ N VAR(Jij) [20]. This quantity is large when
Jλ lies in the vicinity of 1+J2. In this particular situation
the largest eigenvalue of the interaction matrix is equal
to 2J . A special case is the one where J = 1 which corre-
sponds to the transition in the Sherrington-Kirkpatrick
model. The largest eigenvalue of the covariance matrix
diverges in the limit of infinite number of entities. We
illustrated this behavior for N = 100 interacting stocks
with IID Gaussian interaction strengths in Fig-6.
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FIG. 6. (Top) Typical probability distribution of the returns
covariance matrix eigenvalues at the transition. A critical
random market is able to exhibit non-Gaussian covariance
matrix. (Bottom) The empirical probability distribution of
the covariance matrix eigenvalues of the S&P100 index.

In the present applications the entries of the interac-
tion matrix do not seem to have a common mean and
variance; therefore the relation between both kinds of
eigenvalues is more complex than the former one. It
is then non-obvious to conclude wether the interaction
strengths are actually Gaussian or whether the right fat-
tail of their distribution is an actual deviation to the
normal distribution (and not an inference artifact). The
possible interpretation of a market behaving as a critical
complex system should be investigated in detail.

The possible normality of the interactions has another
consequence: the U(s) function defines a Gaussian pro-
cess. Our model is thus a random utility model and tools
of the random matrix theory [25] can be useful to study
the market structure, as they already are in the study
of stock return correlations [4]. We also checked that a
significative part of the interaction strengths are negative
(37.2% for the S&P100 and 24.3% for the Dow Jones).
Together with the former observation of a possible mar-
ket mode even with truly Gaussian Jij , we may think that
the frustration is a main feature of the market interaction
structure. We may think the frustration as competitive
influences between cyclic sectors (more correlated to the
global health of the worldwide economy and thus priv-
ileged by the investor during a growth period) and the
defensive sectors.

Another main feature is the scaling of the mean in-
teraction strengths as a function of the system size, as
needed in the TAP approach. To ensure that the H
function (5) is extensive (scaled as H ∝ N), the mean
strength J̄ij should be scaled as J̄ij ∝ N−1 [26]. Here-
after, we show that the mean interaction strengths ex-
hibit indeed these scaling properties for the characteristic
system sizes encountered in stock markets. We infer the
interaction strengths on a common time window of 1000
trading days (four years long time series) for the follow-
ing indices (given in increasing size): BEL20, AEX, DAX,
DJ, CAC40, S&P100 and Onnela’s set. We add a supple-
mentary point by computing the interaction strengths be-
tween six major European indices (adding another mag-
nitude order of the typical system size). The results are
illustrated in Fig-7
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FIG. 7. Log-log plot of the mean interaction strengths in
function of the typical system sizes (circles). The straight
line is a non-linear fit (power-law).
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We adjust a power law aN−α to the data (illustrated
by a straight line in a log-log graphic). The resulting
coefficient of determination R2 = 0.997. The estimation
of the slope is α̂ = 0.928± 0.030 (mean ± s.d). We con-
clude from this analysis that indeed the mean strength
scale as J̄ij ∝ N−α with alpha close to 1, in the interval
of the characteristic system sizes encountered in finan-
cial markets. This implies that the utility function (5)
may be an extensive one and thus that the quantities
which derive from this function may be correctly scaled.
We note this is not the case for neural networks where
the typical interaction strengths seem to be constant for
growing N . In a physical system this situation is equiv-
alent to lowering the temperature (leading to a frozen

state). The scaling J̄ij ∝ N−1 implies on the contrary
that financial systems will not freeze and will not have
the error-correcting property [1].

Since the interaction strengths can be weak, we may
ask if they have actually a predominant role in the market
structure or if the values of the interesting quantities are
principally determined by the individual bias hi. From
the relation (2) we conclude that the orientation of each
stock si is subjected to a total bias hi + 2−1

∑

j Jijsj .

The interactions play a key role if the internal bias hint
i =

2−1
∑

j Jijsj is significative compared to the individual
bias hi. We checked that they are in average of the same
magnitude order. The results for the S&P100 index are
illustrated in Fig-8.
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FIG. 8. Comparison of the S&P100 index internal bias hint

i

experienced by a stock versus its individual bias hi. In the
upper left triangle, the internal bias dominates the intrinsic
bias. Similar results are obtained even for smaller indices (like
the BEL20 or AEX).

Collecting the previous results, we gave some empir-
ical evidences that the financial market is described by
a statistical model equivalent to an infinite range mean
field spin glass. The spin glass theory provides an effec-
tive toolbox to study the financial markets structure as
a complex system [20, 26].

However, we do not identify this statistical model
to the Sherrington-Kirkpatrick model because there is
no guarantee that the interactions are quenched (static

mean and variance) or even drawn from the same distri-
bution. If the parameters are not quenched, their values
can possibly change before the equilibration (if there is
any) of the system.

IV. CONCLUSION

We provided empirical evidences that the financial net-
work is accurately described by a statistical model which
can be thought as an Ising model on a complex (pos-
sibly complete) graph with scaled interaction strengths.
This results lays down the pairwise model as a consistent
paradigm in the study of stock market since first and
second order influences are the dominant ones. In par-
ticular, we showed that the orientations are accurately
inferred by the TAP equation (in the stability domain).
Linked to this result, we checked that almost all the in-
teraction strengths are Gaussian random variables, their
average values scale as N−α with α close to 1. There
is a significative part of the interaction strengths which
are negative, leading to frustration. Moreover, we showed
that this model with truly Gaussian and scaled (N−1) in-
fluences is able to recover the market eigen-mode. Conse-
quently the proposed model may be thought as an exact
mean-field one and the market state cannot be deduced
by an observation of a small part of it. Some meth-
ods developed in the spin glasses and neural networks
theories could be applied in the study of the financial
network, but we must pay attention to the specificities
of each discipline, like the characteristic system size and
the scaling of the interactions for instance. Some of the
consequences are the existence of metastable states, the
emergence of collective phenomena and spatial patterns,
etc. Furthermore, the processes taking place in the stock
market should then occur at different timescales. The
finite size of the stock market avoids the thermodynamic
limit even as an approximation. Indeed the characteristic
index size is about N = 102 or N = 103, much smaller
than in physical or biological systems. Even if the rele-
vant variables are correctly scaled, the fluctuations can
be significant because at equilibrium they typically scale
as

√
N (far from transition).

Other potentialities could be the clustering analysis,
the characterization of the financial network (confirming
the small-worldness and scale-freeness within this frame-
work), the study of crises through the interaction matrix
and Monte-Carlo simulations. Some of these aspects will
be investigated in further works.
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