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Alpha Representation For Active Portfolio Management and High Frequency Trading In
Seemingly Efficient Markets

Godfrey Cadogan∗

Abstract
We introduce a trade strategy representation theorem for performance measurement and portable alpha in high fre-

quency trading, by embedding a robust trading algorithm that describe portfolio manager market timing behavior, in
a canonical multifactor asset pricing model. First, we present a spectral test for market timing based on behavioral
transformation of the hedge factors design matrix. Second,we find that the typical trade strategy process is a local
martingale with a background driving Brownian bridge that mimics portfolio manager price reversal strategies. Third,
we show that equilibrium asset pricing models like the CAPM exists on a set with P-measure zero. So that excess
returns, i.e. positive alpha, relative to a benchmark indexis robust to no arbitrage pricing in turbulent capital markets.
Fourth, the path properties of alpha are such that it is positive between suitably chosen stopping times for trading.
Fifth, we demonstrate how, and why, econometric tests of portfolio performance tend to under report positive alpha.

Keywords: market timing; empirical alpha process; unobserved portfolio strategies; martingale system; behavioural
finance; high frequency trading; Brownian bridge; Jensen’salpha; portable alpha
JEL Classification Codes:C02, G12, G13

1. Introduction

The problem posed is one in which a portfolio manager (”PM”) wants to increase portfolio alpha–the returns
on her portfolio, over and above a benchmark or market portfolio. To do so [s]he alters the betas1 of the
portfolio in anticipation of market movements by augmenting a benchmark model with hedge factors2–
which includes but is not limited to revising asset allocation or readjusting portfolio weights within an
asset class. In other words, altered betas represent the managers dynamic trading strategy3. Conceptually,
the allocation of assets in the benchmark is “fixed” but hedgefactors are stochastic4–at least for so called
”portable alpha”5.

This paper’s contribution to behavioural finance, and the gargantuan market timing literature, stems from
its reconciliation of active portfolio management with efficient markets when portfolio strategy or investment
style is unobservable6. It employs asymptotic theory to identify an empirical portfolio alpha process with

∗Corresponding address: Institute for Innovation and Technology Management, Ted Rogers School of Management, Ryerson
University, 575 Bay, Toronto, ON M5G 2C5; e-mail:godfrey.cadogan@ryerson.ca. I thank Bonnie K. Ray of IBM Watson Research
Center, Program Chair, at the Joint Statistical Meeting 2011, Business and Economics Section for her efforts in facilitating this
work. I am grateful to Steve Slezak, Victor K. Ng, and Gautam Kaul for introducing me to this topic, in its variegated forms,
during Financial Economics seminars held at the Universityof Michigan many years ago. An expanded version of this paperwith
extensive literature review, and detailed proofs is available from the author upon request. Research support from the Institute for
Innovation and Technology Management is gratefully acknowledged. All errors which may remain are my own.

1See e.g.,Grundy and Malkiel(1996) for viability of beta as a useful metric for covariance withbenchmarks.Grinold (1993)
provides excellent exposition on the versatility of beta seperate from its use in the CAPM introduced bySharpe(1964), inter alios.

2SeeFama and French(1996); and (Fung and Hsieh, 1997, pg. 276)
3Implicit in this assessment is the portfolio manager’s response to good news or bad news accordingly–about assets in her

portfolio–to exploit a so called leverage effect. See e.g.,Black (1976); Braun et al.(1995).
4See e.g., (Jensen, 1967, pg. 10).
5 See (Kung and Pohlman, 2004, pg. 78-79). To wit, the portfolio may be ”market neutral’ since benchmark and or market risk

is hedged away..
6See e.g.,Henriksson and Merton(1981); Grinblatt and Titman(1989); Ferson and Schadt(1996); Mamaysky et al.(2008);

Kacperczyk et al.(2008).
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dynamic portfolio adjustments7 that reflect managerial strategy via martingale system equations that portend
algorithmic trading. Additionally, it proves that the measurable sets for portfolio manager market timing
ability are much larger than those proffered in the extant literature which tests for timing ability via statistical
significance of convex payoff structure(s)8. Accordingly, we propose a new and simple test for market timing
ability based on the spectral circle induced by a behavioural transformation of the hedge factor matrix.

The paper proceeds as follows. Insection 2we formally introduce our model. Whereupon we
summarize our representation theory result in Theorem2.16. Our spectral test for market timing is presented
in Proposition 2.13. In section 3we apply our theory to the ubiquitous CAPM to provide analytics about
Jensen’s alpha. The main result there is Theorem3.1on the path process of positive alpha.

2. The Canonical Linear Asset Pricing Model

Let
y = Xδδδ +Zγγγ +εεε (2.1)

be the canonical hedge factor model, i.e., augmented capital asset pricing model (CAPM), for a portfolio
comprised of:X–a matrix of returns frombenchmark assets9; andZ–a matrix of returns fromhedge factors10

mimicking derivatives. The portfoliobetais given by the row vectorβββ T = (δδδ T γγγT) andεεε is a column vector
of idiosyncratic error terms11. The hedge factor strategy is embodied byZ. Thus,modulo idiosyncratic
error, ourportfolio alphais given by

ααα = Zγγγ (2.2)

Whereuponγγγ is hedge factor exposure sensitivity–it represents thetrading strategyof the portfolio man-
ager12. Similarly, δδδ is benchmark exposure sensitivity13. We would like to know what impact inclusion of
Z has on the model, including but not limited to its impact on returnsy14. For example, if inclusion ofZ has
no impact, thenγγγ is statistically zero: our portfolio manager’s choice ofZ is not generatingalpha. In the
sequel our analyses are based on the following

Assumption 2.1(Filtered probability space). (Ω,F ,F,P). Ω is the sample space for states of nature;F

is theσ -field of Borel measurable subsets ofΩ; P is a probability measure defined onΩ; and F = {Fs ⊆
Ft ⊆ F ; 0≤ s< t < ∞} is a filtration of subσ -fields ofF .

Assumption 2.2. y : Ω → R\{{−∞},{∞}}

Assumption 2.3. P− limT→∞
∑T

t=1 xtzt
T = 0

Assumption 2.4. The hedge factor matrix Z(t,ω) = (zi j (t,ω)) ∈ L2(Ω,F ,P). Thus

i. (zi j (t,ω))isB[0,∞)⊗F measurable for theσ -field of Borel setsB generated on[0,∞).

7See e.g.,Urstadt(2010).
8See e.g. Treynor and Mazuy(1966); Treynor and Black (1973); Merton (1981); Bollen and Busse(2001). Cf.

Grinblatt and Titman(1989); Ferson and Schadt(1996).
9See (Grinold and Kahn, 2000, pp. 88-89) for explanation of benchmarking concept.

10Arguably the most popular augmented CAPM-type benchmarking model isFama and French(1993) (3-factor model includes;
benchmark; small minus big stock returns (SMB); high minus low book to market stock returns (HML)). SeeNoehel et al.(2010)
for a literature review.

11Column vectors are in bold print. The superscript T corresponds to transposition of a vector or matrix accordingly.
12(Jarrow and Protter, 2010, pg. 2) identifies the constant intercept in a multifactor model as portfolio alpha. Our approach is

tantamount to explaining that intercept withZ. See (Avery et al., 2011, pg. 17-18).
13See e.g. (Treynor and Black, 1973, pg. 68) for further interpretation and analytics.
14(MacKinlay and Pastor, 1998, pg. 5) posited a similar parametrization except that they used aJames and Stein(1961) type

estimation procedure to evaluate the impact of a missing factor on returns.
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ii. zi j (t,ω) is Ft-adapted.

iii. E [z2
i j (t,ω)]< ∞.

Assumption 2.5. Markets are liquid so trades are executed at given prices.

Assumption 2.6. Market microstructure effects are negligible.

Assumption 2.7. E[ε ] = 0, E[ε2]< ∞

Assumption 2.8. βββ is time varying.

To facilitate our asymptotic theory of portfolio alpha, we use a canonical dyadic partition of the unit inter-
val [0,1] starting at an arbitrary timet = t0, on function spaceC[0,1]15. In particular,∏(n)= {t(n)0 , t(n)1 , . . . , t(n)mn }
is a dyadic partitiont(n)j = j.2−n for j = 1. . .2n. Let y

t(n)j
be the augmented portfolio return at timet(n)t ; xT

t(n)j

be the corresponding row vector of returns on the benchmark assets; andzT
t(n)j

be the corresponding row

vector of returns on hedge factors in the model. Letδδδ
t(n)j

andγγγ
t(n)j

be thet(n)j -th period coefficients, and

∆δδδ
t(n)j+1

= δδδ
t(n)j+1

−δδδ
t(n)j

, ∆γγγ
t(n)j+1

= γγγ
t(n)j+1

−γγγ
t(n)j

(2.3)

be the corresponding change in model coefficients due to an additional observation16.

Assumption 2.9. ∆δδδ
t(n)j+1

and∆γγγ
t(n)j+1

areF
t(n)j+1

−-measurable.

To isolate the impact of thej +1-th period observation on the model we write






y
t(n)j

. . .

y
t(n)j+1




=








X
t(n)j

... Z
t(n)j

. . . . . . . . . . . .

xxxT
t(n)j+1

... zzzT
t(n)j+1














δ̂δδ
t(n)j+1

. . . .

γ̂γγ
t(n)j+1







+






e
t(n)j

. . . .

e
t(n)j+1




 (2.4)

wheree is the sample estimate ofε . In which case we get the linear relation

y
t(n)j

= Xδ̂δδ
t(n)j+1

+Zγ̂γγ
t(n)j+1

+e
t(n)j+1

(2.5)

y
t(n)j+1

= xT
t(n)j+1

δ̂
t(n)j+1

+zT
t(n)j+1

γ̂
t(n)j+1

+e
t(n)j+1

(2.6)

wherexT
t(n)j+1

andzT
t(n)j+1

arerow vectors. So that if there arem assets in the benchmark portfolio, andp hedge

factors/assets, thenX
t(n)j

= [x
t(n)1

. . .x
t(n)j

] is a j ×m matrix, andZ
t(n)j

= [z
t(n)1

. . .z
t(n)j

] is a j × p matrix. An

additional observation appends a row vector to each matrix accordingly17. So thatZ is really a progressively
measurablej × p matrix process forj = 0,1, . . . ,2n.

15Technical points involving Skorokhod spaceD[0,1] are ignored here.
16(Fulkerson et al., 2010, pp. 8-9) used a similar parametrization to decompose portfolio returns into active and passive compo-

nents.
17In the sequel we suppress the time subscript for theX

t(n)j
andZ

t(n)j
matrices, and writeX anndZ for notational convenience.

However, we reserve the right to invoke the time subscript asnecessary..
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2.1 Behavioural Heuristics On Altering Beta

Technically,zT
t(n)j+1

(ω) is not F
t(n)j

-adapted. That is, it cannot be determined solely from information

in F
t(n)j

. The portfolio manager must be “clairvoyant” and find some algebraic number18 in F
t(n)j+1

. The

gist of Cadogan(2011b) is that implied volatility (σ ) from options prices is such a “clairvoyant” algebraic
number19. Therefore, for some closed class of polynomialsP, and polynomialsg, h ∈ P, the hedge
factor(s)zT

t(n)j+1

can be expressed as a polynomialg(σ) for σ ∈ F
t(n)j+1

with coefficients drawn fromF
t(n)j

. In

other words, returns forecast must be based on forward[g(σ)] and backward[h(y
t(n)1

, y
t(n)2

, . . . , y
t(n)j

)] looking

variables based on derivative pricing. So that

y
t(n)j+1

= g(σ)+h(y
t(n)1

, y
t(n)2

, . . . , y
t(n)j

)+ ε
t(n)j+1

(2.7)

In which case forxxx
t(n)j

fixed in 2.6, zzz
t(n)j+1

= g(σ) is the contribution of new information to returns,y
t(n)j+1

,

after parameter updates20. In a nutshell,zzz
t(n)j+1

is predictable21; thus paving the way for its use in martingale

transform equations. These results are summarized in the following

Lemma 2.10(Predictable hedge factors).
LetzT

t(n)j+1

be a vector of returns isomorphic to the terminal payoff of a contingent claim, andσ be an algebraic

number inF
t(n)j+1

. Let P be the class of closed polynomials with coefficients inF
t(n)j

. ThenzT
t(n)j+1

= g(σ) is

predictable.

�

Remark2.1. Kassouf(1969) provides empirical support for this lemma.

The dispositive question here is how to alter the portfolio‘s beta, i.e., forecastδ
t(n)j+1

andγ
t(n)j+1

, to maximize

next period‘s returns. The vector of returns is given by

yyy
t(n)j+1

= [yT
t(n)j

: yT
t(n)j+1

]T . Whereupon (2.8)

y
t(n)j

= Xδδδ
t(n)j+1

+Zγγγ
t(n)j+1

+εεε
t(n)j

(2.9)

= Xδδδ
t(n)j

+

ex posttracking error
︷ ︸︸ ︷

X∆δδδ
t(n)j+1

+Zγγγ
t(n)j+1

+εεε
t(n)j

, and (2.10)

y
t(n)j+1

= xT
t(n)j+1

δδδ
t(n)j+1

+

ex antetracking error
︷ ︸︸ ︷

zT
t(n)j+1

γγγ
t(n)j+1

+ ε
t(n)j+1

(2.11)

Ideally, the portfolio manager would like tracking error tobe zero as she tries to replicate the benchmark
and or index in2.10. See e.g., (Elton et al., 2003, pp. 676-677). See also, (Grinold and Kahn, 2000, pg. 49)
who define “tracking error” as “how well the portfolio can track the benchmark”. It is the “active returns”

18See e.g., (Clark, 1971, pg. 88) for definition of algebraic number and related concepts introduced here.
19See also,Bakshi et al.(2010) who showed that forward looking volatility, i.e. an algebraic number, from options mar-

ket have predictive power for asset returns. At a more technical level, (Myneni, 1992, pg. 10) used martingale theory from
(Dellacherie and Meyer, 1982, pg. 135, 74(b)) to advocate for the existence ofdual predictable projectionof processes with inte-
grable variation. To wit, ifZ is convex–as hypothesized, then it satisfies the dual predictable projection criterion.

20See e.g.,Admati and Pfleiderer(1988) for evolution of trade patterns and information flows.
21See (Karatzas and Shreve, 1991, pg. 21).
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on the portfolio. This is tantamount to imposing the following behavioral restrictions on theex posttracking
error equation

X∆δδδ
t(n)j+1

+Zγγγ
t(n)j+1

+εεε
t(n)j

= 0 (2.12)

If the proportion of assets in the benchmark is fixed–technically this is a ”portable alpha” strategy, then

∆δδδ
t(n)j+1

= 0, and (2.13)

γ̂γγ res
t(n)j+1

=−(ZTZ)−1ZTεεε
t(n)j

(2.14)

Thus, hedge factor exposure sensitivity plainly depends on, inter alia, the behavior ofεεε
t(n)j

. Consistent with

our augmented model, define the projection matrices, see e.g., (Greene, 2003, pp. 149-150)

PX = X(XTX)−1XT (2.15)

PZ = Z(ZTZ)−1ZT (2.16)

MX = I −PX (2.17)

MZ = I −PZ (2.18)

So that assuming thatX andZ are uncorrelated withεεε we have the unrestricted estimate, see (Christopherson et al.,
1998, pp. 121-122),

γ̂γγunres
t(n)j+1

= (ZTMXZ)−1ZTMXy
t(n)j

(2.19)

Our portfolio manager has superior market timing ability, see (Ferson and Schadt, 1996, pg. 436), if

zT
t(n)j+1

γγγ res
t(n)j+1

+ ε
t(n)j+1

≥ 0 (2.20)

So we can rewrite2.11as follows

y
t(n)j+1

= xT
t(n)j+1

δδδ
t(n)j+1

+max{0, zT
t(n)j+1

γγγ
t(n)j+1

+ ε
t(n)j+1

} (2.21)

Whereupon substitution of̂γγγ res
t(n)j+1

from 2.14in 2.20yields

ε
t(n)j+1

≥ zT
t(n)j+1

(ZTZ)−1ZTεεε
t(n)j

(2.22)

The functional form in2.21is equivalent to (Merton, 1981, pp. 365-366, 368-369) formulation of isomor-
phism between the pattern of returns from market timing and returns on an option strategy22. Intuitively, our
parametrization implies that the benchmark is perfectly tracked. Thus, any mispricing in the model stems
from the PM performance in selecting hedge factors or contingent claims. In any event,2.22suggests that
if our portfolio manager is bullish, i.e. she believes that the returns process is a semi-martingale that is
favorable to her, see e.g., (Doob, 1953, pg. 299), then

zT
t(n)j+1

(ZTZ)−1ZTεεε
t(n)j

≥ ε
t(n)j

(2.23)

Equations2.22and2.23gives rise to the following

22See also,Glosten and Jagannathan(1994) and (Agarwal and Naik, 2004, pg. 68) for extension(s).
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Theorem 2.11(Market Timing Theorem). Let Z be a matrix of hedge factors at time t(n)
j and zT

t(n)j+1

be

an additional row vector of future observations, i.e., derivative prices of the hedge factors. Furthermore,
suppose thatεεε

t(n)j
is a vector of portfolio manager forecast errors, andε

t(n)j+1
is forecast error at time t(n)j+1.

Assume that Z andε· are uncorrelated, and thatε· ∼ (0,1). Then our portfolio manager has market timing
ability iff

sup
0≤ j≤2n

‖E[zT
t(n)j+1

](ZTZ)−1ZT‖2≥ 2−n (2.24)

�

Remark2.2. The theorem essentially implies that as trading frequency increases, i.e.n ↑ ∞, our portfolio
manager will have timing ability for any previsible process{zt ,Ft ; t ≥ 0}. This is thesui generisof market
timing. It constitutes a mathematical proof ofChance and Hemler(2001) empirical results which found
that the same portfolio managers who seemingly lacked timing ability at low frequency were found to have
timing ability at high frequency.

2.2 The Martingale System Equation For Market Timing

This section develops the martingale representation theory. See (Dudley, 2004, pp. 363-365) and (Breiman,
1968, Chapter 5) for excellent summary of martingales. Let

u j(ω) =







1 if zT
t(n)j+1

γγγ res
t(n)j+1

+ ε
t(n)j+1

(ω)> 0

0 if zT
t(n)j+1

γγγ res
t(n)j+1

+ ε
t(n)j+1

(ω)≤ 0
(2.25)

and define

dk+1 = y
t(n)k+1

−xxxT
t(n)k

δδδ
t(n)k+1

(2.26)

So that the equation

d̄n = d1+
n−1

∑
j=1

u j(ω)d j+1 (2.27)

represents the excess returns from the given portfolio strategy. This is the martingale system equation
referred to in (Snell, 1952, pg. 295). In the context of our model it represents the portfolio manager data
mining algorithm which propels her high frequency trades. The specific strategy in place can be seen from
rewriting the equation as

d̄n = d1+
2n−1

∑
k=1

(y
t(n)k+1

−xxxT
t(n)k

δδδ
t(n)k+1

)+ (2.28)

= d1+
2n−1

∑
k=1

(z
t(n)k+1

γγγ
t(n)k+1

+ ε
t(n)k+1

)+ (2.29)

where the summand is tantamount to a call option on the benchmark23, as indicated byMerton (1981);
Henriksson and Merton(1981). See also, (Henricksson, 1984, pg. 77). According to (Snell, 1952, Thm. 2.1, pg. 295)

23In our case, the call option is on some hedge factor(s) that are uncorrelated with the benchmarkper se. Arguably, the benchmark
constitutes the ”microforecast” while the hedge factor(s)comprise the ”macroforecast” or market timing ability. SeeFama(1972).
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the sequence{dn,Fn;n≥ 1} is a semimartingale in whichE[d̄n| F1]≤ E[dn| F1]. For our purposes it im-
plies that in an efficient market, in the long run, the portfolio manager should be no better off by “judicious”
selection of favorablēdn transforms, i.e., option(s) strategies. These artifacts are summarized in a slightly
modified version of Snell‘s Theorem as follows:

Proposition 2.12(Snell‘s Theorem). (Snell, 1952, Thm. 2.1, pg. 295).
Let (Ω,P,F ) be a probability space; D= {dk,Fk;k ≥ 1} be a martingale; and{uk(ω); k ≥ 1} be a se-
quence ofFk-measurable random variables. Define

d̄k = d1+
k−1

∑
j=1

u j(ω)dk+1

If E[|d̄k|]< ∞ for all k, thenD̄ = {d̄k, Fk; k≥ 1} is a martingale, and the uk‘s are nonnegative, then̄D is a
submartingale. If the uk‘s are binary random variables taking the values0 or 1, then we have

E[d̄k|F1]≤ E[dk|F1]

with probability 1.

�

Proof. SeeSnell(1952).

2.3 Trade strategy in continuous time, and statistical testfor market timing

In this subsection we state some of our main results–most with referenced proofs. Equating2.14and
2.19gives rise to the following

Proposition 2.13(Spectral test for market timing).
Let Z be a j× p matrix of hedge factors, X be a j×m matrix of benchmark assets, and PX = X(XTX)−1XT

be the projection matrix on X-space. Define A= ZT(2I −PX)Z where I is the identity matrix. Letλk(A) be
the k-th eigenvalue of A. Letη > 0 be a suitably chosen number. Then our portfolio manager has timing
ability if

max
1≤k≤p

|λk(A)|> η

Moreover, this is tantamount to the statistical test:

H0 : max
1≤k≤p

λk(A)≤ η versus Ha : H0 is not true

�

Remark2.3. The exact statistical distribution for max1≤k≤p λk(A) is a fairly complex looking function given
in Erten et al.(2009). Moreover, in practice it is possible forλ to be negative based on numerical routines.

Remark2.4. (Hansen and Scheinkman, 2009, Cor. 6.1, pg. 200) derived a principal eigenvalue result by
applying semigroup theory to a stochastic discount factor assumed to follow a Markov process.

Nonetheless, to computer the power of our spectral test we proffer the following

Theorem 2.14(Power of spectral test for market timing). If ℓ1 = max1≤k≤p λk(A) is the largest latent root
of A, and A=HTH, where H∼N(0, In⊗Σ) and Wp(n,Σ) is a Wishart distribution with n-degrees of freedom
and dimension p, A∼Wp(n,Σ), then the distribution function forℓ1 can be expressed as

PΣ(ℓ < η) =
Γm[

1
2(m+1)]

Γm[
1
2(n+m+1)]

det(1
2nηΣ−1)

n
2 1F1(

n
2; 1

2(n+m+1); −1
2nηΣ−1) (2.30)

7



where1F1(·) is a hypergeometric function such that

pFq(a1, . . . ,ap; b1, . . . ,bq; z) =
∞

∑
k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

zk

k!

where(a)k = a(a+1) . . . (a+k−1), andΓm(·) is a multivariate gamma function.

Proof. See (Muirhead, 2005, pg. 421, Cor. 9.7.2).

Remark2.5. The multivariate gamma functionΓm(·) is defined in (Muirhead, 2005, pg. 61).

Theorem 2.15(Subordinated Brownian motion). Let ε
t(n)j

be independent and identically distributed with

E[ε
t(n)j

] = 0 and E[ε2
t(n)j

] = σ2 < ∞, for j = 1,2, . . . ,2n. Let SN = ΣN
j=1ε

t(n)j
and for t(n)j ≤ t < t(n)j+1 define

ε (n)
t =

1√
n
[S[nt]+(nt− [nt])ε[nt]+1

Thenε (n)
t+2−n−ε (n)

t is a subordinated Brownian motion for some strictly monotone function c(·). In particular,

ε (n)
t+2−n(ω)− ε (n)

t (ω)∼ Bc(t)(ω) on the probability space(Ω, F , P).

Proof. SeeAppendix A.

Theorem 2.16(Trading strategy representation.Cadogan(2011a)).
Let (Ω,F ,F,P) be a filtered probability space, and Z= {Zs,Fs; 0 ≤ s< ∞} be a hedge factor matrix
process on the augmented filtrationF. Furthermore, let a(i,k)(Zs) be the(i,k)-th element in the expansion
of the transformation matrix(ZT

s Zs)
−1ZT

s , and B= {B(s),Fs; s≥ 0} be Brownian motion adapted toF

such that B(0) = x. Let γ(i)Π(n)
(t,ω) = −∑ j

k=1a(i,k)(Zt∗k )εt(n)k
χ
[t(n)j−1,t

(n)
j )

(t), t(n)j−1 < t∗k < t(n)j , with respect to

partition Π(n) and characteristic functionχ
[t(n)j−1,t

(n)
j )

(t). Assuming that B is the background driving Brownian

motion for high frequency trading, the limiting hedge factor sensitivity process, i.e. trading strategy,γ =
{γs,Fs;0≤ s< ∞} generated by portfolio manager market timing for Brownian motion starting at the point
x≥ 0 has representation

dγ(i)(t,ω) =
j

∑
k=1

a(i,k)(Zt)

[
x

1− t

]

dt−
j

∑
k=1

a(i,k)(Zt)dB(t,ω), x≥ 0

for the i-th hedge factor i= 1, . . . , p, and0≤ t ≤ 1.

Proof. Apply Theorem2.15to limn→∞ γ(i)Π(n)
(t,ω). See (Cadogan, 2011a, Thm. 4.6).

3. Application: Dynamic alpha in a single factor model

We employ our trade strategy representation theorem, to shed light on the behavior of portfolioalpha in a
single factor model like CAPM, where there is no hedge factor. In particular, let1{n} be an×1 vector, and

Z = 1{n} (3.1)

So that

(ZTZ)−1ZT = n−1
1

T
{n}, and a(1,k)(Zs) = n−1, k= 1, . . . ,n (3.2)
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Substitution of these values in2.2and Theorem2.16gives us

α(1)(t) = γ(1)(t) (3.3)

−dα(1)(t) =− x
1− t

dt+dB(t) (3.4)

That is the equation of a Brownian bridge starting atB(0) = x on the interval[0,1]. See (Karlin and Taylor,
1981, pg. 268). So that

dα(1)(t) =−dBbr(t) (3.5)

α(1)(t) = Bbr(0)−Bbr(t) (3.6)

The Brownian bridge feature suggests that portfolio managers open and close their net positions at zero,
and take profits (or losses) in between. See e.g.,Urstadt(2010). And the negative sign implies that our
portfolio manager is engaged in a price reversal strategy. See e.g., (Brogaard, 2010, pp. 14-15). So that
Bbr(t) < 0 ⇒ α(1)(t) > 0. According to Girsanov’s formula in (Øksendal, 2003, pg. 162), we have an
equivalent probability measureQ based on the martingale transform

M(t,ω) = exp

(∫ t

0

x
1−s

dB(s,ω)−
∫ t

0

(
x

1−s

)2

ds

)

(3.7)

dQ(ω) = M(T,ω)dP(ω), 0≤ t ≤ T ≤ 1 (3.8)

Thus, we have theQ-Brownian motion, i.e. Brownian bridge

B̂(t) =−
∫ t

0

x
1−s

ds+B(t), and (3.9)

dα(1)(t) =−dB̂(t) =−dBbr(t) (3.10)

In other words,α(1) is aQ-Brownian motion, i.e. Brownian bridge, that reverts to theorigin starting atx.
We note that for idiosyncratic riskε(t), the CAPM holds ifα(1)(t)+ ε(t) = 0, and

dα(1)(t)
dt

+
ε(t)
dt

=−dBbr(t)
dt

+
ε(t)
dt

= 0 (3.11)

Hence the ”residual(s)”ε(t), associated with alpha, have an approximately skewed U-shape pattern if
Bbr(t)≤ 0. (Karatzas and Shreve, 1991, pg. 358) also provide further analytics which show that on[0,1] we
can write the portfolio alpha process in mean reverting formas

dα(1)(t) =
1−α(1)(t)

1− t
dt+dB(t); 0≤ t ≤ 1, α(1)(0) = 0 (3.12)

M(t) =
∫ t

0

dB(s)
1−s

(3.13)

T(s) = inf{t|< M >t> s} (3.14)

G(t) = B<M>T(t)
(3.15)

Thus, under Dambis-Dubins-Schwarz criteria, alpha is a time changed martingale–in this case Brownian
motion. In the absence of a hedge factor, the single factor orbenchmark, is perfectly tracked if

α(1)(t) = 0, B̂(t,ω) = x (3.16)

The foregoing gives rise to the following
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Theorem 3.1(Positive CAPM alpha excursion).
Letα(1)+(t) be the Q-Brownian motion excursion path of CAPM alpha at timet in 3.9, and B(t) be standard
one-dimensional Brownian motion. Letτα

+(t) be the first zero of B after andτα
−(t) be the first zero of B before

t = 1. So that

τα
+(t) = inf{t > 1|B(t) = 0} (3.17)

τα
−(t) = sup{t < 1|B(t) = 0} (3.18)

Then

α(1)+(t) =
|B(tτα

+ +(1− t)τα
−(t))|

√

τα
+(t)− τα

−(t)
(3.19)

�

Proof. SeeVervaat(1979).

Thus, the path properties of portfolio alpha can be identified and excess returns can be computed
for suitably chosen stopping times. The propertyB̂(t,ω) = x reduces the problem to one of local time [of a
Brownian bridge] atx. We can think ofx as a hurdle rate such as transaction costs that the manager must
attain to break even. The probability associated with the CAPM alpha level setB = {ω | B̂(t,ω) = x} is
zero. However, even though that set has P-measure zero, its local time exists. Perhaps more important, the
perfectly hedged portfolio problem, i.e. the CAPM problem,reduces to one of stochastic optimal control–
guiding α(1) to a goal of 0 by keeping it as close to 0 as possible. This problem, and related ones, were
solved byBenes et al.(1980) and in (Karatzas and Shreve, 1991, Chapter 6.2).

3.1 On spurious econoometric tests for alpha

According to (Karlin and Taylor, 1981, pg. 269) the expected value of alpha starting atx, and its variance is
given by

E[α(1)| B̃(t)] =− x
1− t

, σ2
α (1) = 1 (3.20)

Let{α(1)
1 , . . . ,α(1)

N } be a sample of alphas forN-funds. Furthermore, assume that the fund alphas are pairwise
correlated with correlation coefficientρi j . Cf. (Avery et al., 2011, pp. 17-19). So that

α(1)
i = ρi j α

(1)
j , |ρi j |< 1 (3.21)

The sample mean and variance of the funds are given by

ᾱ(1)
N =

1
N
(α(1)

1 + . . .+α(1)
N } (3.22)

σ2
ᾱ (1) =

1
N2(σ

2
α (1)

1

+ . . .+σ2
α (1)

N

+2∑
i 6= j

cov(α(1)
i ,α(1)

j )) (3.23)

|∑
i 6= j

cov(α(1)
i ,α(1)

j )| ≤ ∑
i 6= j

|cov(α(1)
i ,α(1)

j )|≤ ∑
i 6= j

|ρi j |≤
(

N
2

)

(3.24)

10



In that milieu, at-test for the hypothesisH0 : α(1) = 0 has test statistic

tᾱ (1)
N

=
ᾱ(1)

N

σᾱ (1)
N

=
ᾱ(1)

N
√

1
N + 2

N2 ∑i 6= j cov(α(1)
i ,α(1)

j )
(3.25)

≥ ᾱ(1)
N

√
1
N +1

, for sufficiently largeN (3.26)

lim
N→∞

tᾱ (1)
N

= Zᾱ (1)
∞

≥ ᾱ(1)
∞ , whereZᾱ (1)

∞
is a standard normal r.v. (3.27)

Ergodic theory24 tells us that the limiting value of the test statisticᾱ(1)
∞ is a Brownian bridge25. Moreover,

according to3.20, it tends to be negative valued. Thus, an analyst could easily conclude that the sampled
funds do not generate positive alpha26. Yet, we know from the path properties in Theorem3.1that there are
stopping times for which the funds do generate positive alpha. So contrary to (Jarrow, 2010, pg. 19) false
positive alpha postulate, our theory indicates that there is a false negative alpha puzzle.

4. Appendix

A. Proof of subordinated Brownian motion Theorem 2.15

Proof. Define

SN = ΣN
j=1ε

t(n)j
(A.1)

so that

E[S2
N] = ΣN

j=1E[ε2
t(n)j

] = Nσ2 (A.2)

Without loss of generality, normalizeε with ε
σ so that we haveE[ε2] = 1 and

E[(
SN√

N
)2] = 1 (A.3)

For t(n)j ≤ t < t(n)j+1 let

ε (n)
t =

1√
n
[S[nt]+(nt− [nt])ε[nt]+1 (A.4)

24See e.g., (Gikhman and Skorokhod, 1969, pg. 127)
25In this heuristic example, we ignored issues arising from seemingly unrelated regressions or confidence sets.
26(Phillips, 1998, pg. 1308) noted that the time trend component in a Brownian bridge–in our case alpha–contributes to spurious

regression.Also, (Ferson et al., 2003, pg. 1398) cautioned about seemingly significantt-ratios derived from spurious regressions.
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where[nt] is the integer part ofnt. So that

ε (n)
t+2−n − ε (n)

t =
1√
n
[S[nt+n.2−n]+

(nt+n.2−n− [nt+n.2−n])ε[nt+n.2−n]+1]− [S[nt]+(nt− [nt])ε[nt]+1 (A.5)

= Σ[nt+n.2−n]
j=[nt]+1 ε

t(n)j
+

(nt+n.2−n− [nt+n.2−n])ε[nt+n.2−n]+1− (nt− [nt])ε[nt]+1 (A.6)

Which implies

E[(ε (n)
t+2−n − ε (n)

t )2|F
t(n)j

] = [nt+n.2−n]− [nt]−1+

(nt+n.2−n− [nt+n.2−n])2+(nt− [nt])2 (A.7)

= n.2−n+o(1+n−1)−1 (A.8)

This implies that

E[{ 1√
n
(ε (n)

t+2−n − ε (n)
t )}2|F

t(n)j
]

= 2−n+o(n−1+n−2)− 1
n
= c(n).2−n (A.9)

for some monotone increasing functionc(·). See e.g.,Cadogan(2011b).
To complete the proof of Theorem2.15, we note that according to precepts of construction of Brownian

motion, Brownian scaling, see e.g., (Karatzas and Shreve, 1991, Thm. 4.17, pg. 67; and Lemma 9.4, pg. 104),
and Lemma B.1 inCadogan(2011a), the quantityε (n)

t+2−n − ε (n)
t is ascaledBrownian motionW(c(n)2−n)for

somemonotone increasingpre-subordinator ‘function 0≤ c(·)≤ 1.
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