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1. Introduction 

During the last 15 years econometric techniques for evaluating macroeconomic 
policy using dynamic stochastic models in which expectations are consistent, or 
rational, have been developed extensively. Designed to solve, control, estimate, or 
test such models, these techniques have become essential for theoretical and 
applied research in macroeconomics. Many recent macro policy debates have 
taken place in the setting of dynamic rational expectations models. At their best 
they provide a realistic framework for evaluating policy and empirically testing 
assumptions and theories. At their worst, they serve as a benchmark from which 
the effect of alternative assumptions can be examined. Both "new Keynesian" 
theories with sticky prices and rational expectations, as well as "new Classical" 
theories with perfectly flexible prices and rational expectations fall within the 
domain of such models. Although the models entail very specific assumptions 
about expectation formation and about the stochastic processes generating the 
macroeconomic time series, they may serve as an approximation in other cir- 
cumstances where the assumptions do not literally hold. 

The aim of this chapter is to describe and explain these recently developed 
policy evaluation techniques. The focus is on discrete time stochastic models, 
though some effort is made to relate the methods to the geometric approach (i.e. 
phase diagrams and saddlepoint manifolds) commonly used in theoretical con- 
tinuous time models. The exposition centers around a number of specific proto- 
type rational expectations models. These models are useful for motivating the 
solution methods and are of some practical interest per  se. Moreover, the 
techniques for analyzing these prototype models can be adapted fairly easily to 
more general models. Rational expectations techniques are much like techniques 
to solve differential equations: once some of the basic ideas, skills, and tricks are 
learned, applying them to more general or higher order models is straightforward 
and, as in many differential equations texts, might be left as exercises. 

Solution methods for several prototype models are discussed in Section 2. The 
effects of anticipated, unanticipated, temporary, or permanent changes in the 
policy variables are calculated. The stochastic steady state solution is derived, and 
the possibility of non-uniqueness is discussed. Evaluation of policy rules and 
estimation techniques oriented toward the prototype models are discussed in 
Sections 3 and 4. Techniques for general linear and nonlinear models are 
discussed in Sections 5 and 6. 

2. Solution concepts and techniques 

The s ine  qua non of a rational expectations model is the appearance of forecasts 
of events based on information available before the events take place. Many 
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different techniques have been developed to solve such models. Some of these 
techniques are designed for large models with very general structures. Others are 
designed to be used in full information estimation where a premium is placed on 
computing reduced form parameters in terms of structural parameters as quickly 
and efficiently as possible. Others are short-cut methods designed to exploit 
special features of a particular model. Still others are designed for exposition 
where a premium is placed on analytic tractability and intuitive appeal. Graphical 
methods fall in this last category. 

In this section, I examine the basic solution concept and explain how to obtain 
the solutions of some typical linear rational expectations models. For expositional 
purposes I feel the method of undetermined coefficients is most useful. This 
method is used in time series analysis to convert stochastic difference equations 
into deternfinistic difference equations in the coefficients of the infinite moving 
average representation. [See Anderson (1971, p. 236) or Harvey (1981, p. 38)]. The 
difference equations in the coefficients have exactly the same form as a determin- 
istic version of the original model, so that the method can make use of techniques 
available to solve deterministic difference equations. This method was used by 
Muth (1961) in his original exposition of the rational expectations assumption. It 
provides a general unified treatment of most stochastic rational expectations 
models without requiring knowledge of any advanced techniques, and it clearly 
reveals the nature of the assumptions necessary for existence and uniqueness of 
solutions. It also allows for different viewpoint dates for expectations, and 
provides an easy way to distinguish between the effects of anticipated versus 
unanticipated policy shifts. The method gives the solution in terms of an infinite 
moving average representation which is also convenient for comparing a model's 
properties with the data as represented in estimated infinite moving average 
representations. An example of such a comparison appears in Taylor (1980b). An 
infinite moving average representation, however, is not useful for maximum 
likefihood estimation for which a finite ARMA model is needed. Although it is 
usually easy to convert an infinite moving average model into a finite ARMA 
model, there are computationally more advantageous ways to compute the 
A R M A  model directly as we will describe below. 

2.1. Scalar models 

Let Yt be a random variable satisfying the relationship 

Yt = a E y t + l  + But, (2.1) 
t 

where a and 8 are parameters and E t is the conditional expectation based on all 
information through period t. The variable u t is an exogenous shift variable or 
"shock" to the equation. It is assumed to follow a general linear process with the 
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representation 
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U t = ~ Oil3t_i, (2.2) 
i = 0  

where 0 i = 0,1,2 . . . .  is a sequence of parameters, and where e t is a serially 
uncorrelated random variable with zero mean. The shift variable could represent 
a policy variable or a stochastic error term as in an econometric equation. In the 
latter case, ~ would normally be set to 1. 

The information upon which the expectation in (2.1) is conditioned includes 
past and current observations on e t as well as the values of a, & and 0i. The 
presence of the expected value of a f u t u r e  endogenous variable E t y t +  1 is 
emphasized in this prototype model because the dynamic properties that this 
variable gives to the model persist in more complicated models and raise many 
important  conceptual issues. Solving the model means finding a stochastic process 
for the random variable Yt that satisfies eq. (2.1). The forecasts generated by this 
process will then be equal to the expectations that appear in the model. In this 
sense, expectations are consistent with the model, or equivalently, expectations 
are rational. 

A m a c r o e c o n o m i c  e x a m p l e .  An important illustration of eq. (2.1) is a classical 
full-employment macro model with flexible prices. In such a model the real rate of 
interest and real output are unaffected by monetary policy and thus they can be 
considered fixed constants. The demand for real money balances-normally  a 
function of the nominal interest rate and total ou tpu t - i s  therefore a function 
only of the expected inflation rate. If Pt is the log of the price level and m t is the 
log of the money supply, then the demand for real money can be represented as 

), (2.3) 

with fl > 0. In other words, the demand for real money balances depends 
negatively on the expected rate of inflation, as approximated by the expected first 
difference of the log of the price level. Eq. (2.3) can be written in the form of eq. 
(2.1) by setting a = f l / ( l + f l )  and 6 = 1 / ( 1 + f l ) ,  and by letting y t = p t  and 
u t = m t .  In this example the variable u t represents shifts in the supply of money, 
as generated by the process (2.2). Alternatively, we could add an error term v t to 
the right hand side of eq. (2.3), to represent shifts in the demand for money. Eq. 
(2.3) was originally introduced in the seminal work by Cagan (1956), but with 
adaptive, rather than rational expectations. The more recent rational expectations 
version has been used by many researchers including Sargent and Wallace (1973). 
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2 . 1 . 1 .  S o m e  e c o n o m i c  p o l i c y  i n t e r p r e t a t i o n s  o f  t h e  s h o c k s  

2 0 0 1  

The stochastic process for the shock variable u t is assumed in eq. (2.2) to have a 
general form. This form includes any stationary ARMA process [see Harvey 
(1981), p. 27, for example]. For empirical applications this generality is necessary 
because both policy variables and shocks to eciuations frequently have com- 
plicated time series properties. In many policy applications (where u t in (2.2) is a 
policy variable), one is interested in " thought  experiments" in which the policy 
variable is shifted in a special way and the response of the endogenous variables is 
examined. In standard econometric model methodology, such thought experi- 
ments require one to calculate policy multipliers [see Chow (1983), p. 147, for 
example]. In forward-looking rational expectations models, the multipliers depend 
not  only on whether the shift in the policy variable is temporary or permanent, 
but  also on whether it is anticipated or unanticipated. Eq. (2.2) can be given a 
special form to characterize these different thought experiments, as the following 
examples indicate. 

T e m p o r a r y  v e r s u s  p e r m a n e n t  s h o c k s .  The shock u t is purely temporary when 
00 = 1 and 0 i = 0 for i > 0. Then any shock u t is expected to disappear in the 
period immediately after it has occurred; that is E t u t +  i = 0 for i > 0 at every 
realization of u r At the other extreme the shock u t is permanent when 0i = 1 for 
i > 0. Then any shock u t is expected to remain forever; that is E t u t +  i = U t for 
i > 0 at every realization of u r In this permanent case the u t process can be 
written as u t = u t 1 + e r  (Although u t is not a stationary process in this case, the 
solution can still be used for thought experiments, or transformed into a sta- 
t ionary series by first-differencing.) 

By setting 0 i = pi, a range of intermediate persistence assumptions can be 
modeled as p varies from 0 to 1. For 0 < p < 1 the shock u t is assumed to phase 
out  geometrically. In this case the u t process is simply u t = p u t _  1 + et ,  a first 
order  autoregressive model. When p = 0, the disturbances are purely temporary. 
When p = 1, they are permanent. 

A n t i c i p a t e d  v e r s u s  u n a n t i c i p a t e d  s h o c k s .  In policy applications it is also im- 
portant  to distinguish between anticipated and unanticipated shocks. Time delays 
between the realization of the shock and its incorporation in the current informa- 
tion set can be introduced for this purpose by setting O i = 0 for values of i up to 
the length of time of anticipation. For example, in the case of a purely temporary 
shock, we can set 0 0 = 0 ,  01 =1,  0 i=O  for i > l  so that u s = e  t 1. This would 
characterize a temporary shock which is anticipated one period in advance. In 
other words the expectation of ut+ 1 at time t is equal to ut+ 1 because e t = u t +  1 is 
in the information set at time t. More generally a temporary shock anticipated k 
periods in advance would be represented by u s = e t _  k.  

A permanent  shock which is anticipated k periods in advance would be 
modeled by  setting 0 i = 0 for i =1 , . . . ,  k -  1 and 0 i = 1 for i = k, k + 1 . . . . .  
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Table 1 
Summary  of a l ternat ive  pol ic ies  and  thei r  effects. 

Model: Z = a E z + I  + But, [al <1.  

dut+i 
Policy:  ut = E OiEt i ~ Oi = ~ E t  ' i = 0,1 . . . . .  

i=O 
dy,+ i 

Solu t ion  Fo rm:  Yt = ~*~t-, ~ ~, = -de-~- '  i = 0 , 1 , . . . .  
i = 0  

Stochastics: e t is  serial ly uncorre la ted  wi th  zero mean.  
T h o u g h t  Expe r imen t :  One t ime un i t  impulse  to e r 
T h e o r e m :  Fo r  every  in teger  k > 0. 

if  

Oi = ( 0  for i < k,  
p i -k  f o r i > k ,  t 

then  

{ S a - O  k) f o r i < k ,  
1 -  ap  

7i = 8pi -  k 

1 - ap  for i > k. 

I n t e rp re t a t i on :  
Pol icy  is anticipated k per iods  in  advance, 

k = 0 m e a n s  unanticipated. 
Poficy is phased-ou t  at  geometr ic  rate p, 0 < p _< 1, 

p = 0 m e a n s  pure ly  temporary (N.B. po = 1 w h e n  O = 0), 
p = 1 m e a n s  permanent. 

J. B. Taylor 

Similarly,  a shock  which is anticipated k periods in advance  and which  is then 
expected  to  phase  out  gradually would  be mode l ed  by setting 0 i = 0 for i = 
1 , . . . ,  k - 1 and 0~ = p~- k for i = k, k + 1 . . . . .  wi th  0 < P < 1. In this case (2.2) can 
be  wri t ten  alternatively as u t = p u t _  1 + e t k, a first-order autoregressive mode l  
wi th  a t ime delay. 

T h e  var ious  categories of  shocks  and their mathemat ica l  representations are 
s u m m a r i z e d  in Table  1. A l though  in practice, we  interpret e t in eq. (2.2) as a 
cont inua l ly  perturbed random variable, for these thought  experiments  we  examine  
the effect o f  a one- t ime  unit impulse  to e r The  so lut ion  for Yt derived be low can 
be  used  to calculate  the effects o n  Y t  of  such single realizations of  e r 

2.1.2. Finding the solution 

In order to find a solution for Yt (that is, a stochast ic  process  for Yt which  satisfies 
the m o d e l  (2.1) and (2.2)), we begin by representing Yt in the unrestricted infinite 
moving average form 

Y' = ~ "[i~'t i" (2.4) 
i = 0  
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Finding a solution for Yt then requires determining values for the undetermined 
coefficients y~ such that eq. (2.1) and (2.2) are satisfied. Current and past e t 

represent the entire history of the perturbations to the model. Eq. (2.4) simply 
states that Yr is a general function of all possible events that may potentially 
influence Y r  The linear form is used in (2.4) because the model (2.2) is linear. 
Note  that the solution for Yt in eq. (2.4) can easily be used to calculate the effect 
of a one time unit shock to e I. The dynamic impact of such a shock is simply 

d y t + s / d e  t = ys. 
To find the unknown coefficients, the most direct procedure is to substitute for 

Yt and E t y t +  1 in (2.1) using (2.4), and solve for the Yi in terms of a, 8 and 0i. The 
conditional expectation Ety t+  1 is obtained by leading (2.4) by one period and 
taking expectations, making use of the equalities Etet+ ~ = 0 for i > 0. The first 
equality follows from the assumption that e t has a zero unconditional mean and 
is uncorrelated; the second follows from the fact that e,+~ for i < 0 is in the 
conditioning set at time t. The conditional expectation is 

E y t +  1 = ~ Yiet_i+t. (2.5) 
t i = l  

Substituting (2.2), (2.4) and (2.5) into (2.1) results in 

oo oo oo 

E ~tiet--1 =Ol E Yiet--i+l " ~  E Oiet i" ( 2 . 6 )  
i ~ o  i ~ l  i=o  

Equating the coefficients of et, e t 1, et 2,... on both sides of the equality (2.6) 
results in the set of equations 

"[i = Ol'[i+ l -[- ~O i i = 0 , 1 , 2  . . . . .  (2.7) 

The first equation in (2.7) for i = 0 equates the coefficients of e t on both sides of 
(2.6); the second equation similarly equates the coefficient for e t_ 1 and so on. 

Note  that (2.7) is a deterministic difference equation in the ~,i coefficients with 
0 i as a forcing variable. This deterministic difference equation has the same 
structure as the stochastic difference eq. (2.1). It can be thought of as a 
deterministic perfect foresight model of the "variable" 7~- Hence, the problem of 
solving a s tochas t i c  difference equation with conditional expectations of future 
variables has been converted into a problem of solving a de te rmin i s t i c  difference 
equation. 

2.1.3.  T h e  so lu t ion  in the  case o f  u n a n t i c i p a t e d  shocks  

Consider first the most elementary case where u t = e r That is, 0 i = 0 for i >_ 1. 
This is the case of unanticipated shocks which are temporary. Then eq. (2.7) can 
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~'o = a~'l + 8. ( 2 . 8 )  

1 
Yi+l = ~77i  i = 1 , 2  . . . . .  (2.9) 

F rom eq. (2.9) all the 77~ for i > 1 can be obtained once we have Y1- However, eq. 
(2.8) gives only one equation in the two unknowns 70 and 771- Hence without 
further information we cannot determine the 77~ coefficients uniquely. The number 
of unknowns is one greater than the number of equations. This indeterminacy is 
what leads to non-uniqueness in rational expectations models and has been 
studied by many researchers including Blanchard (1979), Flood and Garber 
(1980), McCallum (1983), Gourieroux, Laffont, and Monfort  (1982), Taylor 
(1977), and Whiteman (1983). 

If  lal-< 1 then the requirement that Yt is a stationary process will be sufficient 
to yield a unique solution. (The case where lal > 1 is considered below in Section 
2.1.4.). To see this suppose that '~1 5/= 0. Since eq. (2.9) is an unstable difference 
equation, the 77i coefficients will explode as i gets large. But then Yt would not be 
a stationary stochastic process. The only value for 3'1 that will prevent the 77i from 
exploding is 771 = 0. From (2.9) this in turn implies that 77i = 0 for all i > 1. From 
eq. (2.8) we then have that 770 = 8. Hence, the unique stationary solution is simply 
Yt = ~et. In this case, the impact of a unit shock dYt+s/ /de t  is equal to 8 for s = 0 
and is equal to 0 for s > 1. This simple impact effect is illustrated in Figure la. 
(The more interesting charts in Figures lb,  lc, and ld  will be described below). 

E x a m p l e  

In the case of the Cagan money demand equation this means that the price 
pt = ( l + f l ) - l m t .  Because /3 > 0, a temporary unanticipated increase in the 
money supply increases the price level by less than the increase in money. This is 
due to the fact that the price level is expected to decrease to its normal value 
(zero) next period, thereby generating an expected deflation. The expected defla- 
tion increases the demand for money so that real balances must increase. Hence, 
the price Pt rises by less than m t. This is illustrated in Figure 2a. 

For  the more general case of unanticipated shifts in u t that are expected to 
phase-out gradually we set 0~ = O ~, where p < 1. Eq. (2.7) then becomes 

1 8p i 
i = 0 ,1 ,2 ,3  . . . . .  (2.10) Yi+l = ~77i a 

Again, this is a standard deterministic difference equation. In this more general 
case, we can obtain the solution 77i by deriving the solution to the homogeneous 
part  yff/) and the particular solution to the non-homogeneous part 77i (p). 
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dYt+s 

de t 

(a) dYt+s 

de t 

o 

6 
1 - ~ p  

(b) 

s 0 s 

2005 

d y t +  s (c) dY t+  s (d) 

de t de t 

6ozk _ _ _ I ~  

7 -  . 
0 k s 0 k s 

F i g u r e  l (a) .  Effect on  Yt of an  unan t i c ipa ted  uni t  shif t  in  u t which is t empora ry  (u t = et). (b). Effect 
on  Yt of  an  u n a n t i c i p a t e d  un i t  shift  in u t which  is phased-ou t  g radua l ly  (u  t = OUt 1 + et). (c). Effect 
on  Yt of an  an t i c i pa t ed  uni t  shif t  in  u t which  is t empora ry  (an t ic ipa ted  at  t ime 0 and  to occur  a t  t ime 
k )  ( u  t = e t k)" (d). Effect on  Yt of an  an t ic ipa ted  shif t  in  u t which  is phased-ou t  g radua l ly  (anti-  

c ipa ted  at  t ime 0 and  to occur  a t  t ime k )  (u  t = Out_ 1 + e l_k) .  

The solution to (2.10) is the sum of the homogeneous solution and the particular 
solution ~'i = ~,~m + ,{~e). [See Baumol (1970) for example, for a description of 
this solution technique for deterministic difference equations]. The homogeneous 
part is 

y [ f l ? = l  ,(m i = 0 , 1 , 2 ,  (2.11) t i  " ' ' ~  

with solution y~ffl ~ = (1/a)'+l¥0<H). As in the earlier discussion if I~1 < 1 then for 
stationarity we require that ~,0 ~r) = 0. For any other value of 70 ~H) the homoge- 
neous solution will explode. Stationarity therefore implies that ,/~H)= 0 for 
i = 0 , 1 , 2  . . . . .  
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Price level 

(a) 

1 +/3 -]  

0 

Price level 

(c) 

1 
1+/3 

1+/3(1--p} 

Price level 

(b) 

- - - - - ~  J 
0 s 

Price level 

0 k 

(d) 

1 
1 + /3 ( l - p )  

1 +/3/ 1 - / 3 (  l - -p]  

s 0 k s 

Figure 2(a). Price level effect of an unanticipated unit increase in m t which lasts for one period. 
(b). Price level effect of an unanticipated increase in m t which is phased-out gradually. (c). Price level 
effect of an anticipated unit increase in m,+ k which lasts for one period. The increase is anticipated k 
periods in advance. (d). Price level of an anticipated unit  increase in mr+ k which is phased-out 

gradually. The increase is anticipated k periods in advance. 

To find the particular solution we substitute 7i (e) = h b  i into (2.10) and solve for 
the unknown coefficients h and b. This gives: 

b = o ,  (2.12) 

h = ~ ( 1  - a / 9 ) - l .  

Because the homogeneous solution is identically equal to zero, the sum of the 
homogeneous and the particular solutions is simply 

6 0  i 
i =  0,1,2 . . . . .  (2.13) 

Yi 1 -- a t )  ' 
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In terms of the representation for Yt this means that 

oo 

Yt-- 1--otp E piet-i 
i = 0  

6 
- l _ a p U r  

2007 

(2.14) 

The variable Yt is proportional to the shock u t at all t. The effect of a unit shock 
e t is shown in Figure lb.  Note that Yt follows the same type of first order 
stochastic process that u t does; that is, 

~8 t 
Yt = P Y t - 1  + 1 -- a-------p" (2.15) 

E x a m p l e  

For  the money demand example, eq. (2.14) implies that 

1 
P t - - l _ ( l ~ ) p ( l ~ ) m t  

- - ( l+f l~l- -p))  mr" (2.16) 

As long as p < 1 the increase in the price level will be less than the increase in the 
money supply. The dynamic impact on Pt of a unit shock to the money supply is 
shown in Figure 2b. The price level increases by less than the increase in the 
money supply because of the expected deflation that occurs as the price level 
gradually returns to its equilibrium value of 0. The expected deflation causes an 
increase in the demand for real money balances which is satisfied by having the 
price level rise less than the money supply. For the special case that p = 1, a 
permanent  increase in the money supply, the price level moves proportionately to 
money as in the simple quantity theory. In that case there is no change in the 
expected rate of inflation since the price level remains at its new level. 

2.1.4. A digression on the possibility o f  non-uniqueness 

If [a[ > 1, then simply requiring that Yt is a stationary process will not yield a 
unique solution. In this case eq. (2.9) is stable, and any value of Y1 will give a 
stationary time series. There is a continuum of solutions and it is necessary to 
place additional restrictions on the model if one wants to obtain a unique solution 
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for the 3'i. There does not seem to be any completely satisfactory approach to take 
in this case. 

One possibility raised by Taylor (1977) is to require that the process for y ,  have 
a minimum variance. Consider the case where u, is uncorrelated. The variance of 
y, is given by 

Vary,  = 3,02 + (3'0 - 8)2( a2 - 1)-1. (2.17) 

where the variance of e t is supposed to be 1. The minimum occurs at 3'0 = 8 ,  2 
from which the remaining 3'i can be calculated. Although the minimum variance 
condition is a natural extension of the stationarity (finite variance) condition, it is 
difficult to give it an economic rationale. 

An alternative rule for selecting a solution was proposed by McCallum (1983), 
and is called the "minimum state variable technique". In this case it chooses a 
representation for Yt which involves the smallest number of e t terms; hence, it 
would give Yt = 8et .  McCallum (1983) examines this selection rule in several 
different applications. 

Chow (1983, p. 361) has proposed that the uniqueness issue be resolved 
empirically by representing the model in a more general form. To see this 
substitute eq. (2.8) with 8 = 1 and eq. (2.9) into eq. (2.4) for an arbitrary 3'1. That 
is, from eq. (2.4) we write 

Yt = ~ 3"iEt 1 
i = 0  

= , +  - .  (2.18) 

Lagging (2.18) by one time period, multiplying by a -1 and subtracting from 
(2.18) gives 

1 1 
Y t =  -'~Y, 1-[-(O~3'lq"l)Et - ~ t - 1 ,  (2 .19)  

which is AR MA (1,1) model with a free parameter 7t. Clearly if 71 = 0 then this 
more general solution reduces to the solution discussed above. But, rather than 
imposing this condition, Chow (1983) has suggested that the parameter 71 be 
estimated, and has developed an appropriate econometric technique. Evans and 
Honkapohja  (1984) use a similar procedure for representing ARMA models in 
terms of a free parameter. 

Are there any economic examples where [a[ >1? In the case of the Cagan 
money demand equation, a = f l / ( 1  + f l )  which is always less than 1 since/3 is a 
positive parameter. One economic example where a > 1 is a flexible-price macro- 
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economic model with money in the production function. To see this consider the 
following equations: 

mt -- Pt = azt -- flit" 

z t =  - c ( i t - (  E P t + l -  Pt)) ,  

z t = d ( m t - P t  ). 

(2.20) 

(2.21) 

(2.22) 

where z t is real output, i t is the nominal interest rate, and the other variables are 
as defined in the earlier discussion of the Cagan model. The first equation is the 
money demand equation. The second equation indicates that real output is 
negatively related to the real rate of interest (an " I S "  equation). In the third 
equation z t is positively related to real money balances. The difference between 
this model and the Cagan model (in eq. (2.3)) is that output is a positive function 
of real money balances. The model can be written in the form of eq. (2.1) with 

a = ]3 (2.23) 
1+ ] 3 - d ( a +  ]3c-1) " 

Eq. (2.23) is equal to the value of a in the Cagan model when d -= 0. In the more 
general case where d > 0 and money is a factor in the production function, the 
parameter a can be greater than one. This example was explored in Taylor (1977). 
Another economic example which arises in an overlapping generation model of 
money was investigated by Blanchard (1979). 

Although there are examples of non-uniqueness such as these in the fiterature, 
most theoretical and empirical applications in economics have the property that 
there is a unique stationary solution. However, some researchers, such as 
Gourieroux, Laffont, and Monfort (1982), have even questioned the appeal to 
stationarity. Sargent and Wallace (1973) have suggested that the stability require- 
ment effectively rules out speculative bubbles. But there are examples in history 
where speculative bubbles have occurred and some analysts feel they are quite 
common. There have been attempts to model speculative bubbles as movements 
of Yt along a self-fulfilling nonstationary (explosive) path. Blanchard and Watson 
(1982) have developed a model of speculative bubbles in which there is a positive 
probability that the bubble will burst. Flood and Garber (1980) have examined 
whether the periods toward the end of the eastern European hyperinflations in the 
1920s could be described as self-fulfilling speculative bubbles. To date, however, 
the vast majority of rational expectations research has assumed that there is a 
unique stationary solution. For the rest of this paper we assume that I a] < 1, or 
the equivalent in higher order models, and we assume that the solution is 
stationary. 
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2.1.5.  F i n d i n g  the solut ion in the  case o f  a n t i c i p a t e d  shocks  

J. B. Taylor 

Consider now the case where the shock is anticipated k periods in advance and is 
purely temporary.  That is, u t = et_ k so that O k =1  and 0 i = 0 for i 4= k. The 
difference equations in the unknown parameters  can be written as: 

~i = a]/i+ 1 i = 0 , 1 , 2  . . . .  k - 1 .  (2.24) 

1 8 (2.25) Yk+l = ~-Yk a 

1 
y,+t = ~-~/,  i = k + l ,  k + 2  . . . . .  (2.26) 

The set of equations in (2.26) is identical in form to what we considered earlier 
except that the initial condition is at k + 1. For stationarity we therefore require 
that 7k+1 = 0. This implies from eq. (2.25) that -& = & The remaining coefficients 
are obta ined by working back using (2.24) starting with ~'k = & This gives 
"y i=80t  k - i ,  i = 0 , 1 , 2  . . . .  k - 1 .  

The pat tern  of the 3'i coefficients is shown in Figure lc. These coefficients give 
the impact  of  e t on Yt+,, for s > 0, or equivalently the i m p a c t  o f  the  news  that the 
shock ut will occur k periods later. The size of "{0 depends on how far in the 
future the shock is anticipated. The farther in advance the shock is known (that is, 
the larger is k), the smaller will be the current impact  of the news. 

E x a m p l e  

For  the demand for money example we have 

Pt = 8[o lkg t  "}- Ogk l e t -1  q- " ' "  q- O/Et-(k-1) "{-Et-k]" (2.27) 

Substituting a = f l / ( 1  + fl), 3 = 1/(1 + fl), and e t = ut+ k = mr+ k into (2.27) we 
get 

p ,  = m t + k _  i . (2.28) 
i 

Note  how this reduces to P, = (1+  f l ) - l m  t in the case of unanticipated shocks 
(k  = 0), as we calculated earlier. When the temporary increase in the money 
supply is anticipated in advance, the price level " jumps"  at the date of announce- 
ment  and then gradually increases until the money supply does increase. This is 
illustrated in Figure 2c. 

Finally, we consider the case where the shock is anticipated in advance, but is 
expected to be permanent  or to phase-out gradually. Then, suppose that 0 i = 0 for 
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i = 1, . . . .  k - 1 and 0 i = p i - k  for i > k. Eq. (2.7) becomes 

"Yi = °t'Yi+ 1 i = 0 ,1 ,2 , . . . ,  k - 1 ,  (2.29) 
1 8 p i  - k 

= i = k, k + 1 . . . .  (2.30) T i + I  7 " Y i  o/ 

Note  that eq. (2.30) is identical to eq. (2.10) except that the initial condition starts 
at k rather than 0. The homogeneous part of (2.30) is 

1 
3,/(ffl ~ = ±~,(H) i = k, k + 1 . . . .  (2.31) O/ l 

In order to prevent the 3,/~H) from exploding as i increases it is necessary that 
,&(iJ) = 0. Therefore ~,/(~) = 0 for i = k, k + 1 , . . . .  The unknown coefficients h and 
b of the particular solution ,{(e) = hb i k are 

h = 8 ( 1 - o ~ p )  -1, 

b = O. (2.32) 

Since the homogeneous part is zero we have that 

8p~- k 

i = k, k + 1 . . . . .  (2.33) 
"Yi 1 - -  o / p  

The remaining coefficients can be obtained by using (2.29) backwards starting 
with ~/k = 8(1 - aO) -1. The solution for Yt is 

8 (olkgt -'[- o / k - l E t _  1 -~- • • • "t- O~E t k + l  -}- 8 t - k  Yt 1 - -  ctp 

+ P e t  ~ - 1  + p  2e, k 2 + ' ' ' ) "  (2.34) 

After the immediate impact of the announcement, Yt will grow smoothly until it 
equals 8 ( 1 - a O )  -1  at the time that u t increases. The effect then phases out 
geometrically. This pattern is illustrated in Figure ld. 

E x a m p l e  

For  the money demand model, the effect on the price level Pt is shown in Figure 
2d. As before the anticipation of an increase in the money supply causes the price 
level to jump. The price level then increases gradually until the increase in money 
actually occurs. During the period before the actual increase in money, the level 
of real balances is below equilibrium because of the expected inflation. The initial 
increase becomes larger as the phase-out parameter O gets larger. For the 
permanent  case where O = 1 the price level eventually increases by the same 
amount  that the money supply increases. 
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2.1.6. General  ARMA processes for  the shocks 

J. B. Taylor 

The above solution procedure can be generalized to handle the case where (2.2) is 
an autoregressive moving average (ARMA) model. We consider only unantic- 
ipated shocks where there is no time delay. Suppose the error process is 

U t = p l t l t _ l  + • . . + ppUt_ p + E t q- ~ P t E t _ l  q'- . . . q-- ~pqE t q, (2.35) 

an A R M A  (p,  q) model. The coefficients in the linear process for u t in the form 
of (2.2) can be derived from: 

r a i n ( j ,  p ) 

O j = ~ j  q- E PiOj--X j = 0 , 1 , 2  . . . . .  q ,  

i = 1  

m i n ( j , p )  

Oj = E PiOj--i J > q.  
i - 1  

(2.36) 

whdre +0 = 1. See Harvey (1981, p. 38), for example. 
Starting with j = M - max(p, q + 1) the 0j coefficients in (2.36) are determined 

by a p th  order difference equation. The p initial conditions (0  M 1 . . . .  , 0  M p) for 
this difference equation are given by the p equations that preceed the 0 M 
equation in (2.36). 

To obtain the yg coefficients, (2.36) can be substituted into eq. (2.7). As before, 
the solution to the homogeneous part is yi (n) = 0 for all i. The particular solution 
to the non-homogeneous part will have the same form as (2.36) for j > M. That 
is, 

P 

"Yj= E p i Y j - 1  j = M , M + I  . . . . .  (2.37) 
i = 1  

The initial conditions (Yu-t  . . . . .  Yu p) for (2.37), as well as the remaining y 
values ( Y M - p - t  . . . . .  YO) can then be obtained by substitution of 0i for i = 0, . . . ,  M 
- 1  into (2.37). That is, 

1 3--0 i = 0 ,1 , . .  M - 1 .  (2.38) Ti+l = ~ ' Y i - -  Ol t ", 

Comparing the form of (2.37) and (2.38) with (2.36) indicates that the 7i 
coefficients can be interpreted as the infinite moving average representation of an 
A R M A  (p,  M -  1) model. That is, the solution for Yt is an ARMA ( p ,  M -  1) 
model with an autoregressive part equal to the autoregressive part of the u t 
process defined in eq. (2.35). This result is found in Gourieroux, Laffont, and 
Monfort  (1982). The methods of Hansen and Sargent (1980) and Taylor (1980a) 
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can also be used to compute the ARMA representations directly as summarized 
in Section 2.4 below. 

E x a m p l e :  p =  3, q =  l 

In this 

eo 
01 

02 

0 i 

The 7 

case M = 3 and eq. (2.36) becomes 

~---1, 

= ~1 + PlO0' 

= PlO1 + P200, 

~- [ lOi -1  "-1- P20i 2 "+ P30i-3 

coefficients are then given by 

= Pl"~i 1 q- P2"~i-2 "~- P3"~i-3 

i =  3,4, . . . .  (2.39) 

i = 3 , 4  . . . . .  % 

and the initial conditions 70, ]tl and 
equations 

1 8 
7i ---- ~ To 0/, 

1 
= - S( 1 + 

"y2-'=- (p l - -0 / -1)- - l (p2 ,1-~-p3] t0--  2~--'(p2q-pl~l-I-p2)). 

Eqs. (2.40) and (2.41) imply that Yt is an ARMA (3, 2) model. 

2.1.7. Different viewpoint dates 

(2.40) 

72 are given by solving the three linear 

(2.41) 

In some applications of rational expectation models the forecast of future 
variables might be made at different points in time. For example, a generalization 
of (2.1) is 

y t = a l E y t + l  t - 1  q-0/3 t-lE y t + u t  . (2.42) 

Substituting for Yt and expected Yt from (2.4) into (2.42) results in a set of 
equations for the y coefficients much like the equations that we studied above. 
Suppose u t = pu t 1 + er Then, the equations for 7 are 

Y0 = 0/1~1 + 8, 

= ( 1_0/3 /T ~pi i=1 ,2 ,  (2.43) 
]ti+l ~ 0/1 _t_ 0/2 ] i 0/1+0/2 . . . .  
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Hence,  we can use the same procedures for solving this set of difference equa- 
tions. The solution is 

3'o = albP + 3, 
Yi = bP i i = 1 , 2  . . . . .  

where b = 3 / (1  - ~3 - -  P ~ 2  - -  P O ~ l ) "  Note that this reduces to (2.13) when a 2 = a 3 
= 0 .  

2.1.8. Geometr i c  interpretation 

The solution of the difference eq. (2.7) that underlies this technique has an 
intuitive graphical interpretation which corresponds to the phase diagram method 
used to solve continuous time models with rational expectations. [See Calvo 
(1980) or Dixit (1980) for example]. Eq. (2.7) can be written 

(_) 1 _ 1 Yi - i = 0 , 1  . . . .  ( 2 . 4 4 )  
Y i + l  - -  Y i  = O~ O~ 

The set of values for which Yi is not changing are given by setting the right-hand 
side of  (2.44) to zero. These values of (~'i, Oi) are plotted in Figure 3. In the case 
where 0 i = pi, for 0 < p < 1 there is a difference equation representation for 0 i of 
the fo rm 

0~+ 1 - 0, = (p - 1)0/, (2.45) 

where 00 = 1. The set of points where 0 is not changing is a vertical line at 0~ = 0 
in Figure 3. The forces which move , / and  0 in different directions are also shown 
in Figure 3. Points above (below) the upward sloping line cause yi to increase 
(decrease). Points to the right (left) of the vertical line cause 0i to decrease 
(increase). In  order to prevent the Yi from exploding we found in Section 2.1.3 

7i 

0 

I.  tt j 

0 0~ 

Figure 3. Illustration of the rational expectations solution and the saddle path. Along the saddle path 
the motion is towards the origin at geometric rate p. That is, 0 i = pOii. 
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that it was necessary for 7i = (~ /1  - a p ) O  i. This linear equation is shown as the 
straight line with the arrows in Figure 3. This line balances off the unstable 
vertical forces and uses the stable horizontal forces to bring "{i back to the values 
"{i = 0 and 0 i = 0 and i--* oo. For this reason it is called a saddle point and 
corresponds to the notion of a saddle path in differential equation models [see 
Birkhoff and Rota (1962), for example]. 

Figure 3 is special in the sense that one of the zero-change lines is perfectly 
vertical. This is due to the fact that the shock variable u t is exogenous to Yr If we 
interpret (2.1) and (2.2) as a two variable system with variables Yt and u t as the 
two variables, then the system is recursive in that u t affects Yt in the current 
period and there are no effects of past Yt on u r In Section 2.2 we consider a more 
general two variable system in which u t is endogenous. 

In using Figure 3 for thought experiments about the effect of one time shocks, 
recall that Yi is d y t + i / d e  i and 0 i is d u t + i / d e  r The vertical axis thereby gives the 
paths of the endogenous variable Yt corresponding to a shock e I to the policy eq. 
(2.2). The horizontal axis gives the path of the poficy variable. The points in 
Figure 3 can be therefore viewed as displacements of Yt and u t from their steady 
state values in response to a one-time unit shock. 

The arrows in Figure 3 show that the saddle path line must have a slope greater 
than zero and a slope less than the zero-change line for ~,. That is, the saddle path 
line must lie in the shaded region of Figure 3. Only in this region is the direction 
of motion toward the origin. The geometric technique to determine whether the 
saddle path is upward or downward sloping is frequently used in practice to 
obtain the sign of an impact effect of policy. [See Calvo (1980), for example]. 

In Figure 4 the same diagram is used to determine the qualitative movement of 
Yt in response to a shock to u t which is anticipated k periods in advance and 
which is expected to then phase out geometrically. This is the case considered 

3'i 

k - - l q  

0 

Figure 4. Illustration of the effect of an anticipated shock to u t which is then expected to be phased 
out gradually at geometric rate p, The shock is anticipated k periods in advance. This thought 

experiment corresponds to the chart in Figure l(d). 
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above in Section 2.1.5. The endogenous variable y initially jumps at time 0 when 
the future increase in u becomes known; it then moves along an explosive path 
through period k when u increases by 1 unit. From time k on the motion is along 
the saddle path as y and u approach their steady state values of zero. 

2.1.9. Nonstationary forcing variables 

In many economic applications the forcing variables are nonstationary. For 
example the money supply is a highly nonstationary series. One typically wants to 
estimate the effects of changes in the growth rate of the money supply. What 
happens when the growth rate is reduced gradually? What if the reduction in 
growth is anticipated? Letting u t be the log of the money supply mr, these 
alternatives can be analyzed by writing the growth rate of money as gt = mt  - m~ 1 

and assuming that 

g t - - g t - l = P ( g t - l - - g t  2)q-et-k" 

Thus, the change in the growth rate is anticipated k periods in advance. The 
new growth rate is phased in at a geometric rate O- By solving the model for the 
particular solution corresponding to this equation, one can solve for the price 
level and the inflation rate. In this case, the inflation rate is nonstationary, but the 
change in the inflation rate is stationary. 

2.2. Bivariate models 

Let Ylt and Y2t be given by 

Ylt = O/1 EYlt+I q- flloY2t q- flllY2t-i -}- ~lUt, 
t (2.46) 

Y 2 t = a 2 E y l t + I  +fl20ylt  + f121y2t 1 + ~2ut, 
t 

where u t is a shock variable of the form (2.2). Model (2.46) is a special bivariate 
model in that there are no lagged values of Yat and no lead values of Yzt. This 
asymmetry is meant to convey the continuous time idea that one variable Ylt is a 
" jump"  variable, unaffected by its past while Y2t is a more slowly adjusting 
variable that is influenced by its past values. Of course in discrete time all 
variables tend to jump from one period to the next so that the terminology is not 
exact. Nevertheless, the distinction is important in practice. Most commonly, Yl, 
would be a price and Yzt a stock which cannot change without large costs in the 
short run. 

We assume in (2:.46) that there is only one shock u t. This is for notational 
convenience. The generalization to a bivariate shock (Ult, u2t ) where ult appears 
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in the first equation and u2t in the second equation is straightforward, as should 
be clear below. 

Because (2.46) has this special form it can be reduced to a first order 
2-dimensional vector process: 

(1 - 11t( 1t/=(o1  1o) 
- - / 8 2 0  - - /821] \Y2*-1]  Ot 2 - 1  

t y l t + l  q- 

Y2t 32 
u,. (2.47) 

This particular way to construct a first order process follows that of Blanchard 
and Kahn (1980). A generalization to the case of viewpoint dates earlier than time 
t is fairly straightforward. If Yl t -1  o r  EtY2t+l  also appeared in (2.46) then a 
first-order model would have to be more than 2 dimensional. 

2.2.1. Some  examples  

There are many interesting examples of this simple bivariate model. Five of these 
are summarized below. 

E x a m p l e  1: Exchange  rate overshooting 

Dornbusch (1976) considered the following type of model of a small open 
economy [see also Wilson (1979) and Buiter and Miller (1983)]: 

p t - - P t _ l = / 8 ( e t - - P t ) ,  

where e t is the log of the exchange rate, and Pt and m t are as defined in the 
Cagan model. The first equation is simply the demand for money as a function of 
the nominal interest rate. In a small open economy with perfect capital mobility 
the nominal interest rate is equal to the world interest rate (assumed fixed) 
plus the expected rate of depreciation Etet+ 1 - e c The second equation describes 
the slow adjustment of prices in response to the excess demand for goods. Excess 
demand is assumed to be a negative function of the relative price of home goods. 
Here prices adjust slowly and the exchange rate is a jump variable. This model is 
of the form (2.47) with Ylt = et, Y2t = Pt, al = 1, fllo = - l / a ,  f i l l  = O, 31 = l / a ,  
a 2 = O, /820 =/8 / (1  +/8), /321 = 1 / ( 1  +/8), 32 = O. 

E x a m p l e  2: Open economy portfolio balance model 

Kouri (1976), Rodriquez (1980), and  Papell (1984) have considered the following 
type of rational expectations model which is based on a portfolio demand for 
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foreign assets rather than on perfect capital mobility: 

J. B. Taylor 

et+ f t = a ( E e t + l - e , ) + u , ,  
t 

f t - -  ft_l-----fiet . 

The first equation represents the demand for foreign assets ft (in logs) evaluated 
in domestic currency, as a function of the expected rate of depreciation. Here u t 
is a shock. The second equation is the "current account" (the proportional change 
in the stock of foreign assets) as a function of the exchange rate. Prices are 
assumed to be fixed and out of the picture. This model reduces to (2.47) with 

Ylt=e, ,  Y 2 t = f t ,  % = a ( l + a ) ,  f l o = l / ( l + t x ) ,  f i l l=O,  8 1 = 1 / 1 + a ,  a 2 = O ,  

f i 2 0  = f i '  f i 21  = - -  1 ,  3 2  = 0 .  

Example 3: Money and capital 

Fischer (1979) developed the following type of model of money and capital. 

Yt = Y k t  1,  

r t = - (1 - 7)k ,_  t, 

m t -  P t =  - a x E r t + x -  a2( E p t + l -  P t ) +  

k t -- b 1 EFt+ 1 -6 b2( Ep,+l  - Pt) + Yt. 
t t 

The first two equations describe output y, and the marginal efficiency of capital r t 
as a function of the stock of capital at the end of period t -  1. The third and 
fourth equations are a pair of portfolio demand equations for capital and real 
money balances as a function of the rates of return on these two assets. Lucas 
(1976) considered a very similar model. Substituting the first two equations into 
the third and fourth we get model (2.47) with 

a2 - a 1 ( 1 - 7 )  
Ylt = Pt, Y2t = kt, °/1 - 1 + a 2 ' fil0 -- 1 + a 2 

1 b 2 
, 0 1 2 =  fill = 0 ,  81 1+ a 2 (1 + b 1 ( 1 -  7))  

- -  b 2 Y 

 2o= (1+ bl(l_ ) ) ' &l=  (1+ b1(1_7) ) • 
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E x a m p l e  4: Staggered contracts model 

The model Yt = alEtYt+l + azYt-a  + ~Ut of a contract wage y~ can occur in a 
staggered wage setting model as in Taylor (1980a). The future wage appears 
because workers and firms forecast the wage set by other workers and firms. The 
lagged wage appears because contracts last two periods. This model can be put in 
the form of (2.47) by stacking the y ' s  into a vector: 

= t + Ut -  
- 1  0 Yt 1 0 - 1  Yt 0 

E x a m p l e  5: Optimal control problem 

Hansen and Sargent (1980) consider the following optimal control problem. A 
firm chooses a contingency plan for a single factor of production (labor) n t to 
maximize expected profits. 

n , + j _ l )  - w , + j n , + j  , 
t j = o  

subject to the linear production function Yt = 7n t- The random variables Pt and 
w t are the price of output and the wage, respectively. The first order conditions of 
this maximization problem are: 

n, 1= vp,). 
t 

This model is essentially the same as that in Example (4) where u t = w t - 3'Pt. 

2.2.2. Finding the solution 

Equation (2.47) is a vector version of the univariate eq. (2.1). The technique for 
finding a solution to (2.47) is directly analogous with the univariate case. 

The solution can be represented as 

Ylt  = L ~li~t i~ 
i = 0  

Y 2 t =  ~ ~2igt-i  • 
i~O 

(2,.48) 
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These  representa t ions  for the endogenous  variables are an obvious general izat ion 
of  eqs. (2.4). 

Ut i l iz ing mat r ix  nota t ion  we rewrite (2.47) as 

B z  t = C E z t +  1 + gu t, (2.49) 
t 

Ezt+  1 = A z  t + d u  t, (2.50) 
t 

where  the definit ions of  the matr ices B and C, and the vectors z t and 8 in (2.49) 
should  be  dea r ,  and where A = C - 1 B  and d = -  C - l&  Let  "/~ = ("/1,,"/z~-1)', 

i = 0,1,  2 , . . .  and set "/2, - 1 = 0. Subst i tut ion of  (2.2) and (2.48) into (2.50) gives 

` / i+ l=A" / i -bdOi  i = 0 , 1 , 2 , . . . .  (2.51) 

Eq. (2.51) is analogous to eq. (2.7). For  i = 0 we have three unknown  elements  of  
the u n k n o w n  vectors  `/0 = ('/10,0) ' and "/1 = ('/11, `/20)'. The  3 unknowns  are YlO, 
`/11 and  720- However ,  there are only  two equat ions (at i = 0) in (2.51) that  can be 
used to solve for these three parameters .  Much  as in the scalar case considering 
i = 1 gives two more  equations,  bu t  it also gives two more  unknowns  (3'12, "/21); the 
s ame  is t rue  for  i = 2 and so on. To  de termine  the solution for the "/i process we 
therefore  need  another  equation.  As in the scalar case this third equat ion comes 
b y  i m p o s i n g  stat ionari ty on the process for Ylt  and Y2, or equivalently in this 
con tex t  b y  prevent ing  either e lement  of "/i f rom exploding. For  uniqueness we will 
requi re  tha t  one  root  of A be greater  than  one in modulus,  and one root  be  less 
than  one  in modulus .  The  addit ional  equat ion thus comes f rom choosing "/1 = 

('/11, Yzo)' so that  7 / d o e s  not  explode as i ~ o0. This condi t ion implies a unique 
l inear  re la t ionship  between "/11 and "/20- This relat ionship is the extra  equation.  I t  
is the ana logue  of setting the scalar `/1 = 0 in mode l  (2.1). 

T o  see this, we decompose  the matr ix  A into H - 1 A  H where A is a diagonal  
ma t r ix  wi th  ~1 and ~2 on the diagonal.  H is the matr ix  whose rows are the 
charac ter i s t ic  vectors  of A. Assume that  the roots  are distinct and that  IXll > 1 
and  IX21 < 1. L e t / ~  = (/xl~,/t2~ ) '  = H`/i. Then  the homogeneous  par t  of (2.51) is 

7i+a = H - 1 A H Y i  i = 1 , 2 , . . . ,  (2.52) 

so tha t  

I . t i+l=AI. t i  i = 1 , 2 , . . . ,  

o r  

~1i+1 = ~ 1 ] £ 1 i  i = 1 , 2  . . . .  , 

/x2i+x = X2/~2/ i = 1 , 2 , . . . .  
(2.53) 
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For  stability of /*1~ as i ~ o0 we therefore require that /'11 = 0 which in turn 
implies that/*1i = 0 for all i > 1. In other words we want 

~11 = h11Yll + h12Y20 = 0,  (2.54) 

where (hn ,  hi2 ) is the first row of H and is the characteristic vector of A 
corresponding to the unstable root 2~1- Eq. (2.54) is the extra equation. When 
combined with (2.51) at i = 0 we have 3 linear equations that can be solved for 
YlO, Yll and "/20. From these we can use (2.51) or equivalently (2.53) to obtain the 
remaining ~,~ for i > 1. In particular/'1~ = 0 implies that 

h i 2  
]/li = --  h i  1 "~2i-1 i = 1 , 2  . . . . .  ( 2 . 5 5 )  

From the second equation in (2.53) we have that 

h21Tli+ 1 -{'- h 22]/2i = ~k2(h21Yti -Jr h22-}t2i_l). 

Substituting for ~/1i+1 and ]/li from (2.55) this gives 

~/2i+1 = ~k2~/2i i = 0 ,1 ,2 , . . . .  (2.56) 

Given the initial values ]t21 we compute the remaining coefficients from (2.55) and 
(2.56). 

2.2.3. The  solution in the case o f  unanticipated shocks 

When the shock u t is unanticipated and purely temporary, 00 = 1 and 0 i = 0 for 
all i > 0. In this case eq. (2.51) for i = 0 is 

Yl l  = a11"Y1o "]- d l ,  

"g20 = a21YlO q- d 2 ,  (2.57) 

and the difference equation described by (2.51) for i > 0 is homogeneous. Hence 
the solution given by (2.55), (2.56), and (2.57) is the complete solution. 

For  the more general case where 0; = pi, eq. (2.57) still holds but the difference 
equation in (2.51) for i > 1 has a nonhomogeneous part. The particular solution to 
the nonhomogeneous part is of the form 3,~ *') = gb i where g is a 2 x 1 vector. 
Substituting this form into (2.51) for i > 1 and equating coefficients we obtain the 
particular solution 

~,i (p) = ( p I  - A ) - l d p  i, i = 1 , 2  . . . . .  (2.58) 
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Since eq. (2.55) is the requirement for stability of the homogeneous solution, the 
complete solution can be obtained by substituting ,/1~( ) = ,/11 - -  ' / ( P )  and ,/~0 H) = 
/ _ ,,~e) into (2.54) to obtain 20 / 2 0  

h12 
' /11 - -  ` / (1  P)  = - -  h i  1 (2.59) 

Eq. (2.59) can be combined with (2.57) to obtain ,/10, `/11, and `/20- The remaining 
coefficients are obtained by adding the appropriate elements of particular solu- 
tions (2.58) to the homogeneous solutions of (2.56) and (2.57). 

2.2.4. The solution in the case of anticipated shocks 

For the case where the shock is anticipated k periods in advance, but is purely 
temporary (00 = 0 for i = 1, . . . ,  k -  1, 0 i = 0 for i = k + 1 . . . .  ), we break up the 
difference eq. (2.51) as: 

,/i+l=A`/i i = 0 , 1  . . . . .  k - 1 .  

` / k + l  = A'/k + d. 

`/i+1= ~4,/i i = k  + l , k  + 2 , . . . .  

(2.60) 

(2.61) 

(2.62) 

Looking at the equations in (2.62) it is clear that for stationarity, , /k+l= 
(,/lk+ 1, ,/2k)' must satisfy the same relationship that the vector "/1 satisfied in eq. 
(2.55). That  is, 

h i 2  
'/lk+ 1 -- hi 1 '/2~. (2.63) 

Once ,/2k and '/lk+l have been determined the ,/ values for i >  k can be 
computed as above in eqs. (2.55) and (2.56). That is, 

h i 2  
"Yli+I hi 1 ̀ /2i i = k . . . . .  (2.64) 

'/2i+1 = ~k 2 ' /2 i  i = k . . . . .  (2.65) 

To determine `/2k and Ylk+ 1 we solve eq. (2.63)jointly with the 2(k + 1) equations 
in (2.60) and (2.61) for the 2(k + 1)+1 unknowns ,/11,--.,,/lk+1 and `/20 . . . . .  ,/2k- 
(Note how this reduces to the result obtained for the unanticipated case above 
when k = 0). A convenient way to solve these equations is to first solve the three 
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equations consisting of the two equations from: 

Yk+l = A k + l y 0  + d, (2.66) 

(obtained by "forecasting" Yi out k periods) and eq. (2.61) for "/2k, ~'a~+l and 
3'10. Then the remaining coefficients can be obtained from the difference equations 
in (2.60) starting with the calculated value for 710- 

The case where 0i = 0 for i = 1,. . . ,  k - 1 and O k = / - g  for i = k, k - 1 can be 
solved by adding the particular solution to the nonhomogeneous equation 

yi+l=Ay~+dp(~-k) i = k , k + l , k + 2  . . . . .  (2.67) 

in place of (2.62) and solving for the remaining coefficients using eqs. (2.60) and 
(2.61) as above. The particular solution of (2.67) is 

3 , i ( e ) = ( p I - A ) - l d f f  -k i = k , k + l , k + 2 , . . . .  (2.68) 

2.2.5. The exchange rate overshooting example 

The preceding calculations can be usefully illustrated with Example 1 of Section 
2.2.1.: the two variable "overshooting" model in which the exchange rate (ylt = e t) 
is the jump variable and the price level (Y2t = Pt) is the slowly moving variable. 
For this model eq. (2.50) is 

(et) 
t = A  + d m t ,  

Pt Pt 1 
(2.69) 

where the matrix 

a , (2.70) 
A = l + f l  fl 1 

and the vector d = ( -  l / a , 0 ) ' .  Suppose that a = 1 and fl = 1. Then the character- 
istic roots of A are 

A = 1 +_ - 0.707. (2.71) 

The characteristic vectorassociated with the unstable root is obtained from 

( h l l  , h l 2 ) A  = )k l (h l l  , h i2 ) ,  (2 .72)  
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this gives - h 1 2 / h l l  = -0.414 so that according to eq. (2.56) the coefficients of 
the (homogeneous) solution must satisfy 

Yli+1 = - 0.41472i i = 0,1, . . . .  (2.73) 

Using the stable root we have 

~/2i+1 ~"  0.293Y~i i = 0,1 . . . . .  (2.74) 

The particular solution is given by the vector ( p I  - A) -1 dff -k as in eq. (2,68). 
That is 

(0 .5 -  p)ff  -k i = k, k +1,  k + 2 , . . . ,  (2.75) 
gl(f) = ( 1 . 5 -  p)(0.5 - 0 ) -0 .25  

( p )  _ - 0 . 5 i f -  k 

2 i  1 - -  ( 1 . 5 - p ) ( O . 5 - p ) - 0 . 2 5  i = k , k + l , k + 2 , . . . ,  (2.76) 

where k is the number of periods in advance that the shock to the money supply 
is anticipated (k = 0 for unanticipated shocks). 

In Tables 2, 3, and 4 and in Figures 5, 6, and 7, respectively, the effects of 
temporary unanticipated money shocks (k = 0, P = 0), permanent unanticipated 
money shocks (k = 0, P --1), and permanent money shocks anticipated 3 periods 

Table  2 
Effect  of an unan t i c ipa ted  t empora ry  increase  in  m o n e y  on the exchange  rate  and  

the pr ice  level ( k  = 0, P = 0). 

Pe r iod  a f te r  shock:  i 0 1 2 3 4 

Effect  on  exchange  rate:  71i 0.59 - 0.12 - 0.04 - 0.01 - 0.00 
Effect  o n  pr ice  level: "/2i 0.29 0.09 0.03 0.01 0.00 

Table  3 
Effect  of unan t i c ipa ted  p e r m a n e n t  increase in  m o n e y  on  the exchange rate  and  

the pr ice  level ( k  = 0, p = 1). 

Pe r iod  a f t e r  shock:  i 0 1 2 3 4 

Effect  o n  exchange  rate:  "fii 1.41 1.12 1.04 1.01 1.00 
p a r t i c u l a r  solut ion:  7~(f) - 1 1 1 1 
h o m o g e n e o u s  solut ion:  ~ H )  _ 0.12 0.04 0.01 0.00 

Effect  o n  pr ice  level: ~/~) 0.71 0.91 0.97 0.99 1.00 
p a r t i c u l a r  solut ion:  3 ' ~  1 1 1 1 1 
h o m o g e n e o u s  solut ion:  yg(,. H) - 0.29 - 0.09 - 0.03 - 0.01 - 0.00 
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Table  4 
Effect of a p e r m a n e n t  increase in money  an t ic ipa ted  3 per iods  in  advance  on  the exchange rate  

and  the price level (k  = 3, p =1) .  

Per iod  af ter  the shock:  i 0 1 2 3 4 5 6 

Effect o n  the exchange  rate:  71 0.28 0.43 0.71 1.21 1.06 1.02 1.00 
pa r t i cu l a r  so lu t ion:  +~(,P ) . . . .  1.00 1.00 1.00 
h o m o g e n e o u s  solut ion:  ~,1(i H) . . . .  0.06 0.02 0.01 

Effect on  the p r i ce l eve l :  ~' i 0.14 0.28 0.50 0.85 0.96 0.99 1.00 
pa r t i cu l a r  so lu t ion:  - ~ P) - - - 1.00 1.00 1.00 1.00 
h o m o g e n e o u s  solut ion:  ) . . . .  0.15 0.64 - 0.01 - 0.00 
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Figu re  5. 
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T e m p o r a r y  unan t i c ipa ted  increase in  money.  
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Figure 6. 

Impact on the price level 
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Permanent unanticipated increase in money. 

in advance (k = 3, p =1) are shown. In each case the increase in money is by 1 
percent. 

A temporary unanticipated increase in money causes the exchange rate to 
depreciate (e rises) and the price level to increase in the first period. Subse- 
quently, the price level converges monotonically back to equilibrium. In the 
second period, e falls below its equilibrium value and then gradually rises again 
back to zero (Table 2 and Figure 5). 

A permanent unanticipated increase in money of 1 percent eventually causes 
the exchange rate to depreciate by 1 percent and the price level to rise by 1 
percent. But in the short run e rises above the long-run equilibrium and then 
gradually falls back to zero. This is the best illustration of overshooting (Table 3 
and Figure 6). 
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Figure 7. 
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Permanent increase in money, anticipated 3 periods in advance. 

If the increase in the money supply is anticipated in advance, then the price 
level rises and the exchange rate depreciates at the announcement date. Subse- 
quently, the price level and e continue to rise. The exchange rate reaches its 
lowest value (e reaches its highest value) on the announcement date, and then 
appreciates back to its new long-run value of I (Table 4 and Figure 7). Note that 
p and e are on explosive paths from period 0 until period 3. 

2.2. 6. Geometr ic  interpretation 

The solution of the bivariate model has a helpful geometric interpretation. 
Writing out eq. (2.51) with 0 i = 0 in scalar form as two different equations and 
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subtracting "Yli and "Y2i- 1 from the first and second equation respectively results in 

A]/ l i+I  ~ ]/1i+1 --  71i = ( a l l  - - 1 ) g l i  + a12~/2i-1, 

A'Y2i ~- "}t2i - 'Y2i-1 = a21Yli q- ( a22  --  1)  ~'2i 1- (2.77) 

According to (2.77) there are two linear relationships between 7~ and 3'2i 1 
consistent with no change in the coefficients: k71i=1 = 0 and 372i= 0. For 
example, in the exchange rate model in eq. (2.69), the equations in (2.77) become 

fl 1 
Ayli+I = a(1 +/3)  Yli + a(1 + fl~ t2i-1, 

A'Y2i 1 + fl Yli 1 Jr j~ Y2i- 1" 

(2.78) 

71i 

/ 
'71 i = " /2  i -  1 

Tl i  = --(hl  2/hi 1 )'72i- 1 
1 

T 1 i = - - ~  "/2 i-- I 
I 

0 3'2i-;  

Figure 8. Geometric interpretation of the solution in the bivariate model. The darker line is the 
saddle point  path along which the impact coefficients converge to the equilibrium value of (0,0). 
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Figure 9. Solution values for the case of temporary-unanticipated shocks. (k = 0, p = 0). The 
numbered points are the values of i. See also Table 2 and Figure 5. 
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The two no-change fines are 

1 
Yli = - -  ~ 2 i - - 1 ,  

Yli = Y2i--1, 

(2.79) 

and are plotted in Figure 8. The arrows in Figure 8 show the directions of motion 
according to eq. (2.78) when the no-change relationships in (2.79) are not 
satisfied. It is clear from these arrows that if the y coefficients are to converge to 
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Figure 10. Solution values for a permanent unanticipated increase in the money supply. The open 
circles give the (Yu, Y2i) pairs starting with i = O. 
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Figure 11. Solution values for an anticipated permanent increase in the money supply. The open 
circles give the /1~, 3'2i pairs starting with i = 0. 

their equilibrium value (0,0) they must move along the "saddle point" path 
shown by the darker line in Figure 8. Points off this line will lead to ever-increas- 
ing values of the ~, coefficients. The linear combination of 71i and "~2i-] along this 
saddle point path is given by the characteristic vector associated with the unstable 
root X1 as given in general by eq. (2.55) and for this example in eq. (2.73). Note 
how Figure 8 immediately shows that the saddle point path is downward sloping. 
In Figure 9 the solution values for the impacts on the exchange rate and the price 
level are shown for the case of a temporary shock as considered in Table 2 and 
Figure 5. In Figures 10 and 11, the solution values are shown for the case where 
the increase in money is permanent. The permanent increase shifts the reference 
point from (0,0) to (1,1). The point (1,1) is simply the value of the particular 
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solution in this case. Figure 10 is the case where the permanent increase is 
unanticipated; Figure 11 is the anticipated case. 

Note that these diagrams do not give the impact on the exchange rate and the 
price level in the same period; they are one period out of synchronization. Hence, 
the points do not correspond to a scatter diagram of the effects of a change in 
money on the exchange rate and on the price level. It is a relatively simple matter 
to deduce a scatter diagram as shown by the open circles in Figures 10 and 11. 

2.3. The use of operators, generating functions, and z-transforms 

As the previous Sections have shown, the problem of solving rational expectations 
models is equivalent to solving nonhomogeneous deterministic difference equa- 
tions. The homogeneous solution is obtained simply by requiring that the stochas- 
tic process for the endogenous variables be stationary. Once this is accomplished, 
most of the work comes in obtaining the particular solution to the nonhomoge- 
neous part. Lag or lead operators, operator polynomials, and the power series 
associated with these polynomials (i.e. generating functions or z-transformations) 
have frequently been found useful in solving the nonhomogeneous part of 
difference equations [see Baumol (1970), for economic examples]. These methods 
have also been useful in rational expectations analysis. Futia (1981) and 
Whiteman (1983) have exploited the algebra of z-transforms in solving a wide 
range of linear rational expectations models. 

To illustrate the use of operators, let F S x t  = xt+ s be the forward lead operator. 
Then the scalar equation in the impact coefficients that we considered in eq. (2.7), 
can be written 

( 1 -  a F ) y  i= 30 r i=  0,1,2 . . . . .  (2.80) 

Consider the case where 0 r = O i and solve for ~,i by operating on both sides by the 
inverse of the polynomial (1 -  aF).  We then have 

6p i 

Y~-- 1 - a F  

6fl 
- 1 - a p  

i = 0 , 1 , 2  . . . .  (2.81) 

the last equality follows from the algebra of operator polynomials [see for 
example Baumol (1970)]. The result is identical to what we found in Section 2.1 
using the method of undetermined coefficients to obtain the particular solution. 
The procedure easily generalizes to the bivariate case and yields the particular 
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solution shown in eq. (2.58). It also generalizes to handle other time series 
specifications of 0 i. 

The operator notation used in (2.80) is standard in difference equation analysis. 
In some applications of rational expectations models, a non-standard operator 
has been used directly on the basic model (2.1). To see this redefine the operator 
F as F E t y  t = EtYt+ 1. That is, F moves the date on the variable but the viewpoint 
date in the expectation is held constant. Then eq. (2.1) can be written (note that 

EtY,= Yt): 

(1 - a F )  E y  t = 3 t. (2.82) 
t 

Formally, we can apply the inverse of (1 - a F )  to (2.82) to obtain 

E y  t = 3 ( 1 -  a F ) - l u ,  
t 

= 3 ( l + a F + ( a F ) 2 +  " " ) u ,  

) 
t 

=8(Ut+OtPUt+(ap)2ut + . . . )  
a 

- l _ a p U t ,  (2.83) 

and where we again assume that u t = O U t _ l  "q- e t. Eq. (2.83) gives the same answer 
that the previous methods did (again note that Ety  t = Yt). As Sargent (1979, p. 
337) has discussed, the use of this type of operator on conditional expectations 
can lead to confusion or mistakes, if it is interpreted as a typical lag operator that 
shifts all time indexes, including the viewpoint dates. The use of operators on 
conventional difference operations like (2.6) is much more straightforward, and 
perhaps it is best to think of the algebra in (2.82) and (2.83) in terms of (2.80) and 
(2.81). 

Whiteman's  (1983) use of the generating functions associated with the operator 
polynomials can be illustrated by writing the power series corresponding to eqs. 
(2.2) and (2.4): 

= E 
i = 0  

O(z) = ~ Oi zi. 
i = 0  



Ch. 34." Stabilization Policy in Macroeconomic Fluctuations 2033 

These are the z-transforms [see Dhrymes (1971) for a short introduction to 
z-transforms and their use in econometrics]. Equating the coefficients of e t i in 
eq. (2.6) is thus the same as equating the coefficients of powers of z. That is, (2.6) 
means that 

Solving (2.84) for y(z)  we have 

~ ( Z ) =  (1--OL l Z ) - I ( ' ~ O - - ~ O I - I z O ( z ) ) .  

(2.84) 

(2.85) 

As in Section 2.1, eq. (2.85) has a free parameter "/0 which must be determined 
before "y(z) can be evaluated. For Yt to be a stationary process, it is necessary that 
~,(z) be a convergent power series (or equivalently an analytic function) for 
Izl <1. The term ( 1 - a - l z )  -1 on the right-hand side of (2.85) is divergent if 
o/- 1 > 1. Hence, the second term in parentheses must have a factor to "cancel out" 
this divergent series. For the case of serially uncorrelated shocks, O(z) i f  a 
constant 0 o = 1 so that it is obvious that ~'0 = ~ will cancel out the divergent 
series. We then have ~,(z) = 8 which corresponds with the results in Section 2.1. 
Whiteman (1983) shows that in general 3,(z) will be convergent when I~1 < 1 if 
Yo = 80(a). For the unanticipated autoregressive shocks this implies that y ( z ) =  
8(1 - pa)  1(1 - pz) which is the z-transform of the solution we obtained earlier. 
When lal >1 there is no natural way to determine ~'0, so we are left with 
non-uniqueness as in Section 2.1. 

2.4. Higher order representations and factorization techniques 

We noted in Section 2.2 that a first-order bivariate model with one lead variable 
could be interpreted as a second-order scalar model with a lead and a lag. That is, 

Yt = a l  E y t + I  -t- a2yt_ 1 + But, (2.86) 
t 

can be written as a bivariate model and solved using the saddle point stability 
method. An alternative approach followed by Sargent (1979), Hansen and 
Sargent (1980) and Taylor (1980a) is to work with (2.86) directly. That  the two 
approaches give the same result can be shown formally. 

Substitute for Yt, Yt-1, and EtYt+ 1 in eq. (2.86) using (2.4) to obtain the 
equations 

1 
"/1 = ~ ( ~ o -  8001, (2.87) 

1 82 ~---0 i = 1 , 2 , .  (2.88) 
~ti+l = ~1-1 ] / i -  OL~-~/i-1 -- O[ 1 i " ' "  
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As above, we need one more equation to solve for all the 7 coefficients. Consider 
first the homogeneous part of (2.88). Its characteristic polynomial is 

z2 1 a2 - - - z  + - - ,  (2.89) 
O~ a Ot I 

which can be factored into 

( X a -  z ) ( X 2 -  z) ,  (2.90) 

where ?h and ~2 a r e  the roots of (2.89). The solution to the homogeneous part is 
yi(s) = klX~l + k2~i2. As we discussed above, in many economic applications one 
root, say h I, will be larger than 1 in modulus and the other will be smaller than 1 
in modulus. Thus, the desired solution to the homogeneous part is achieved by 
setting k I = 0 so that V/(/t) = k2~i2 where k 2 equals the initial condition 70 (H). 
Equivalently we can interpret the setting of k 1 = 0 as reducing the characteristic 
polynomial  (2.89) to (z - X2). Thus, the 7 coefficients satisfy 

7i = N27i 1 i = 1 , 2  . . . . .  (2.91) 

Equivalently, we have "factored out" (z - ?~1) from the characteristic polynomial. 
For  the case where u t is uncorrelated so that 0 i = 0 for i > 0, difference 

equation in (2.88) is homogeneous. We can solve for 70 by using 71 = ~k270 along 
with eq. (2.87). This gives 70 = 8 ( 1 -  a1~2)-1~i2 i = 0,1 . . . .  

To  see how this result compares with the saddle-point approach, write (2.88) as 

7i+1 1 
7i } 

- -  7 i  - -  
al 0~1 Yi-  1 - -  Or1 Oi 

1 0 0 

i = 1 , 2  . . . . .  (2.92) 

The characteristic equation of the matrix A is ~2_ (1 / a l )  N _ a 2 / a  1 = 0. Hence, 
the roots of A are identical to the roots of the characteristic polynomial associated 
with the second-order difference eq. (2.88). [This is a well-known result shown for 
the general p th  order difference equation in Anderson (1971)]. 

The characteristic vector of the matrix A associated with the unstable root ~1 
is found from the equation ( h l l  , h a 2 ) A  = ~kl(h11 , h12 ). Thus, the saddle point path 
is given by 

h 1 2  ( 1 --•1)Yi 1 . (2.93) 
Yi - -  h i  I Yi-1 = a'--1 

For  the two methods to be equivalent, we need to show that (2.91) and (2.93) 
are equivalent, or that ~k 2 = l / a  1 - ~ k  1. This follows immediately from the fact 
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that the sum of the roots (X 1 + X2) of a second-order polynomial equals the 
coefficients of the linear term in the polynomial: X 1 + X 2 = 1 /a l .  

For the case where 0~ = tJ, we need to compare the particular solutions as well. 
For  the second-order scalar model we guess the form 7~ (e) = ab ~. Substituting this 
into (2.88) we find that b = p  and a = 6 ( 1 - a l p - a 2 p - / 1 )  -1. To see that this 
gives the same value for the particular solution that emerges from the matrix 
formulation in eq. (2.58), note that 

( p I -  A ) - l d p  i=  
1 

p - -  - -  

O~ 1 

- 1  

O~ 2 p 2  L - t - - -  

- -  Ot 1 P a l  

<1 
Ol I Oq ) pi 

p 0 

6 
- -  P a l  pi. 

6 

Ol 1 

(2.94) 

Eq. (2.94) gives the particular solution for the vector (7, (e), 7~(_el)), which corre- 
sponds to the vector 1,~ e) in eq. (2.58). Hence 

y i ( p )  = 

-- p a l  16pi 

p2 _ p a l  I q_ a2ot~l  

6p i 

1 - o t l p  - o~2p - 1  ' 

which is the particular solution obtained from the second-order scalar representa- 
tion. 

Rather than obtaining the solution of the homogeneous system by factoring the 
characteristic equation, one can equivalently factor the polynomial in the time 
shift operators. Because the operator polynomials also provide a convenient way 
to obtain the nonhomogeneous solution (as was illustrated in Section 2.3), this 
approach essentially combines the homogeneous solution and the nonhomoge- 
neous solution in a notationally and computationally convenient way. 

Write (2.88) as 

) ~-8-0 (2.95) _ L _ I +  1 a2 L "~i = . 
Ot 2 O/1 O~ 1 * • 

Let H ( L ) =  L 1 _ l / a l  +(a2/aa)  L be the polynomial on the left-hand side of 
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(2.95) and let P(z )  = z 2 - 1 / ( a l ) z  + Otz/a 1 be the characteristic polynomial in 
(2.89). The polynomial H ( L )  can be factored into 

/ ~ ( 1 -  q ~ L - 1 ) ( 1 -  ~bL), (2.96) 

where q~ = - / ~  1, qj = _  i~-la2a{1, and where /~ is one of the solutions of 
P(t t )  = 0; that is one of the roots of P(.) .  This can be seen by equating the 
coefficient of H ( L )  and the polynomial in (2.96). Continuing to assume that only 
one of the  roots of P( . )  is greater than one in modulus (say X1) we set 

= Xt 1 < 1. Since the product of the roots of P(-)  equals a2a 11 we immediately 
have that qJ = 7~ 2. Thus, there is a unique factorization of the polynomial with 
and qJ both less than one in modulus. 

Because qJ = X 2, the stable solution (2.97) to the homogeneous difference 
equation can be written 

( 1 -  ~kL)y, (H) = O. (2.97) 

The particular solution also can be written using the operator notation: 

Set{ lP' (2.98) 
yi(e) = /~(1 - q~L-')(1 - ~kL)" 

The complete solution is given by 3't = 3'~ (/~) + 3'} e) which implies that 

( 1 -  X2L)~'i = ( 1 -  X2L)Ti (H) + ( 1 -  ~k2 L - l )  "y(P) .  (2.99) 

The first term on the right-hand side of (2.99) equals zero. Therefore the complete 
solution is given by 

"Yi = ~" 2Yi - 1 + 
 11L -1 ) 

,~ a {  %i 
= X 2 ~ i _  1 q- (2.100) Xl(1-px;1) 

This solution is equivalent to that derived by adding the particular solution in 
(2.95) to the solution of the homogeneous solution of (2.91). 

Note that this procedure or solving (2.95) can be stated quite simply in two 
steps: (1) factor the lag polynomial into two stable polynomials, one involving 
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positive powers of L (lags) and the other involving negative powers of L (leads), 
and (2) operate on both sides of (2.95) by the inverse of the polynomial involving 
negative powers of L. 

It is clear from (2.94) that the ,{~ weights are such that the solution for Yt can be 
represented as a first-order autoregressive process with a serially correlated error: 

Yt = ?t 2Y,- ~ + ~°[11(~.1 - D ) - l u t ,  (2.101) 

where 

Ut = OU t 1-{'- E t .  

In the papers by Sargent (1979), Taylor (1980a) and Hansen and Sargent 
(1980), the difference equation in (2.95) was written Yi = EtY,+i and 0 i = Etut+ i, a 
form which can be obtained by taking conditional expectations in eq. (2.86). In 
other words rather than working with the moving average coefficients they worked 
directly with the conditional expectations. As discussed in Section 2.3 this 
requires the use of a non-standard lag operator. 

2.5. Rat ional  expectations solutions as boundary value problems 

It is useful to note that the problem of solving rational expectations models can 
be thought of as a boundary value problem where final conditions as well as 
initial conditions are given. To see this consider the homogeneous equation 

1 
"Yi+I = ~-~i i = 0 ,1 , . . . .  (2.102) 

The stationarity conditions place a restriction on the "final" value limj_~ ~Tj = 0 
rather than on the "initial" value 70. As an approximation we want "yj = 0 for 
large j .  A traditional method to solve boundary value problems is "shooting": 
One guesses a value for Y0 and then uses (2.102) to project (shoot) a value of ~j 
for some large j .  If the resulting yj 4= 0 (or if 7j is further from 0 than some 
tolerance range) then a new value (chosen in some systematic fashion) of ¥0 is 
tried until one gets ~,j sufficiently close to zero. It is obvious in this case that 
Y0 = 0 so it would be impractical to use such a method. But in nonlinear models 
the approach can be quite useful as we discuss in Section 6. 
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This approach obviously generalizes to higher order systems; for example the 
homogeneous part of (2.88) is 

1 a 2 i = 0 , 1 , 2  . . . .  (2 .103)  Vi+l = a-]-Vi- a~Vi-1 

with ~-1 = 0 as one initial condition and 7j = 0 for some large j as the one 
"final" condition. This is a two point boundary problem which can be solved in 
the same way as (2.102). 

3. Econometric evaluation of policy rules 

Perhaps the main motivation behind the development of rational expectations 
models was the desire to improve policy evaluation procedures. Lucas (1976) 
argued that the parameters of the models conventionally used for policy evalua- 
t ion-either through model simulation or formal optimal control-would shift 
when policy changed. The main reason for this shift is that expectations mecha- 
nisms are adaptive, or backward looking, in conventional models and thereby 
unresponsive to those changes in policy that would be expected to change 
expectations of future events. Hence, the policy evaluation results using conven- 
tional models would be misleading. 

The Lucas criticism of conventional policy evaluation has typically been taken 
as destructive. Yet, implicit in the Lucas' criticism is a constructive way to 
improve on conventional evaluation techniques by modeling economic phenom- 
ena in terms of "structural" parameters; by "structural" one simply means 
invariant with respect to policy intervention. Whether a parameter is invariant or 
not is partly a matter of researcher's judgment, of course, so that any attempt to 
take the Lucas critique seriously by building structural models is subject to a 
similar critique that the researcher's assumption about which parameters are 
structural is wrong. If taken to this extreme that no feasible structural modeling is 
possible, the Lucas critique does indeed become purely destructive and perhaps 
even stifling. 

Hansen and Sargent (1980), Kydland and Prescott (1982), Taylor (1982), and 
Christiano (1983) have examined policy problems where only the parameters of 
utility functions or production functions can be considered invariant or structur- 
al. Taylor (1979, 1980b) has considered models where the parameters of the wage 
and price setting functions are invariant or structural. 

The thought experiments described in Section 2 whereby multiplier responses 
are examined should be part of any policy evaluation technique. But it is 
unrealistic to think of policy as consisting of such one-shot changes in the policy 
instrument settings. They never occur. Rather, one wants to consider changes in 
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the way the policymakers respond to events - tha t  is, changes in their policy rules. 
For  this we can make use of stochastic equilibrium solutions examined in Section 
2. We illustrate this below. 

3.1. Policy evaluation for a univariate model 

Consider the following policy problem which is based on model (2.1). Suppose 
that an econometric policy advisor knows that the demand for money is given by 

m , - p t =  - 8 ( E t P t + l - p t ) + u  r (3.1) 

Here there are two shocks to the system, the supply of money m t and the demand 
for money u r Suppose that ut = OUt_l + et, and that in the past the money 
supply was fixed: m t = 0; suppose that under this fixed money policy, prices were 
thought to be too volatile. The policy advisor is asked by the Central Bank for 
advice on how m t can be used in the future to reduce the fluctuations in the price 
level. Note  that the policy advisor is not asked just what to do today or tomorrow, 
but  what to do for the indefinite future. Advice thus should be given as a 
contingency rule rather than as a fixed path for the money supply. 

Using the solution technique of Section 2, the behavior of p~ during the past is 

*' (3.2) 
p t = o p ,  1 1 + 8 ( 1 _ o ) .  

Conventional policy evaluation might proceed as follows: first, the econometri- 
cian would have estimated 0 in the reduced form relation (3.2) over the sample 
period. The estimated equation would then serve as a model of expectations to be 
substituted into (3.1); that is, EtPt+ 1 = OPt would be substituted into 

m , - p , =  - 8 ( O p , - p t ) + u t .  (3.3) 

The conventional econometricians model of the price level would then be 

m t - -  u t 

P t -  1 + 8 ( 1 - 0 ) "  
(3.4) 

Considering a feedback policy rule of the form m t = gu t_ 1 eq. (3.4) implies 

1 
var p , =  o2[g a + 1--2gp] .  (3.5) 

[ 1 + 8 0 - p ) 1 2 ( 1 -  o 2 ) 

If there were no cost to varying the money supply, then eq. (3.5) indicates that the 
best choice for g to minimize fluctuation in Pt is g = p. 
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But we know that (3.5) is incorrect if g ~ 0. The error was to assume that 
EtPt+ 1 = PPt regardless of the choice of policy. This is the expectations error that 
rational expectations was designed to avoid. The correct approach would have 
been to substitute mt= gu t 1 directly into (3.1) and calculate the stochastic 
equilibrium for Pc This results in 

- 1 - f l ( 1  - g )  g ~ u  
Pt= ( X +-fl~l T-fl-(l ~-o) ) u' + l + f l  t-x" 

(3.6) 

Note how the parameters of (3.6) depend on the parameters of the policy rule. 
The variance of Pt is 

Var Pt = 
1 [ (1 + fl(1 - g))2 2 g ( l + B ( 1 - g ) ) o  ] 

(3.7) 

The optimal policy is found by minimizing Var Pt with respect to g. 
This simple policy problem suggests the following approach to macro policy 

evaluation: (1) Derive a stochastic equilibrium solution which shows how the 
endogeneous variables behave as a function of the parameters of the policy rule; 
(2) Specify a welfare function in terms of the moments of the stochastic equi- 
librium, and (3) Maximize the welfare function across the parameters of the 
policy rule. In this example the welfare function is simply Vat p. In more general 
models there will be several target variables. For example, in Taylor (1979) an 
optimal policy rule to minimize a weighted average of the variance of real output 
and the variance of inflation was calculated. 

Although eq. (3.1) was not derived explicitly from an individual optimization 
problem, the same procedure could be used when the model is directly linked to 
parameters of a utility function. For instance, the model of Example (5) in 
Section 2.2 in which the parameters depend on a firm's utility function could be 
handled in the same way as the model in (3.1). 

3.2. The Lucas critique and the Cowles Commission critique 

The Lucas critique can be usefully thought of as a dynamic extension of the 
critique developed by the Cowles Commission researchers in the late 1940s and 
early 1950s and which gave rise to the enormous literature on simultaneous 
equations. At that time it was recognized that reduced forms could not be used 
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for many policy evaluation questions. Rather one should model structural rela- 
tionships. The parameters of the reduced form are, of course, functions of the 
structural parameters in the standard Cowles Commission setup. The discussion 
by Marschak (1953), for example, is remarkably similar to the more recent 
rational expectations critiques; Marschak did not consider expectations variables, 
and in this sense the rational expectations critique is a new extension. But earlier 
analyses like Marschak's are an effort to explain why structural modeling is 
necessary, and thus has much in common with more recent research. 

3.3. Game-theoretic approaches 

In the policy evaluation procedure discussed above, the government acts like a 
dominant player with respect to the private sector. The government sets g and the 
private sector takes g as given. The government then maximizes its social welfare 
function across different values of g. One can imagine alternatively a game 
theoretic setup in which the government and the private sector each are maximiz- 
ing utility. Chow (1983), Kydland (1975), Lucas and Sargent (1981), and Epple, 
Hansen, and Roberds (1983) have considered this alternative approach. It is 
possible to specify the game theoretic model as a choice of parameters of decision 
rules in the steady state or as a formal non-steady state dynamic optimization 
problem with initial conditions partly determining the outcome. Alternative 
solution concepts including Nash equilibria have been examined. 

The game-theoretic approach naturally leads to the important time incon- 
sistency problem raised by Kydland and Prescott (1977) and Calvo (1979). Once 
the government announces its policy, it will be optimal to change it in the future. 
The consistent solution in which everyone expects the government to change is 
generally suboptimal. Focussing on rules as in Section 3.1 effectively eliminates 
the time inconsistency issue. But even then, there can be temptation to change the 
rule. 

4. Statistical inference 

The statistical inference issues that arise in rational expectations models can be 
illustrated in a model like that of Section 2. 

4.1. Full information estimation 

Consider the problem of estimating the parameters of the structural model 

Yt = °t EYt+I + 3xt + vt, 
t 

(4.1) 
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where v t is a serially uncorrelated random variable. Assume (for example) that x t 
has a finite moving average representation: 

X t  = 8t  -[- O l e t  1 "{- " " " -[- Oqet  q '  (4.2) 

where et is serially uncorrelated and assume that Cov(vt, es) = 0 for all t and s. 
To obtain the full information maximum likelihood estimate of the structural 

system (4.1) and (4.2) we need to reduce (4.1) to a form which does not involve 
expectations variables. This can be done by solving the model using one of the 
techniques described in Section 2. Using the method of undetermined coefficients, 
for example, the solution for Yt is 

Y t  = "[Oet + " " " + Y q e t - q  + V t ,  (4.3) 

where the y parameters are given by 

Y1 = 

1 
0 

6 

0 
0 

0~ O~ 2 . . . OL q 1 O/q 

1 OL . . . O~ q 2 o / q - - 1  

1 O/ 

0 0 . . .  0 1 

01 

i q 

(4.4) 

Eqs. (4.2) and (4.3) together form a two dimensional vector model. 

(x':)=( 
+ . . .  - t - (  Yq 0q 

Eq. (4.5) is an estimatable reduced form system corresponding to the structural 
form in (4.1) and (4.2). 

If we assume that (v t, et) is distributed normally and independently, then the 
full-information maximum likelihood estimate of (01 . . . .  , Oq, a, 8) can be obtained 
using existing methods to estimate multivariate ARMA models. See Chow (1983, 
Section 6.7 and 11.6). Note that the coefficients of the ARMA model (4.5) are 
constrained. There are cross-equation restrictions in that the 0 and "~ parameters 
are related to each other by (4.4). In addition, relative to a fully unconstrained 
A R M A  model, the off-diagonal elements of the autoregression are equal to zero. 

Full information estimation maximum likelihood methods for linear rational 
expectations models have been examined by Chow (1983), Muth (1981), Wallis 
(1980), Hansen and Sargent (1980, 1981), Dagli and Taylor (1985), Mishkin 
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(1983), Taylor (1979, 1980a), and Wickens (1982). As in this example, the basic 
approach is to find a constrained reduced form and maximize the likelihood 
function subject to the constraints. Hansen and Sargent (1980, 1981) have 
emphasized these cross-equation constraints in their expositions of rational expec- 
tations estimation methods. In Muth (1981), Wickens (1982) and Taylor (1979) 
multivariate models were examined in which expectations are dated at t - 1 rather 
than t and E t _ l y  t appears in (4.1) rather than Etyt+ v More general multivariate 
models with leads and lags are examined in the other papers. 

For  full information estimation, it is also important that the relationship 
between the structural parameters and the reduced form parameters can be easily 
evaluated. In this example the mapping from the structural parameters to the 
reduced form parameters is easy to evaluate. In more complex models the 
mapping does not have a closed form; usually because the roots of high-order 
polynomials must be evaluated. 

4.2. Identification 

There has been relatively tittle formal work on identification in rational expecta- 
tions models. As in conventional econometric models, identification involves the 
properties of the mapping from the structural parameters to the reduced form 
parameters.  The model is identified if the structural parameters can be uniquely 
obtained from the reduced form parameters. Over-identification and under-iden- 
tification are similarly defined as in conventional econometric models. In rational 
expectations models the mapping from reduced form to structural parameters is 
much more complicated than in conventional models and hence it has been 
difficult to derive a simple set of conditions which have much generality. The 
conditions can usually be derived in particular applications as we can illustrate 
using the previous example. 

When q = O, there is one reduced form parameter ~'0, which can be estimated 
from (4.2) and (4.3), recalling that Cov (v ,  et) = 0, and two structural parameters 

and a in eq. (4.4). Hence, the model is not identified. In this case, 3 = "/0 is 
identified from the regression of Yt on the exogenous xt, but a is not identified. 
When q = 1, there are three reduced form parameters 7o, 71 and 01 which can be 
~stimated from (4.2) and (4.3), and three structural parameters 8, a, and 01. (01 is 
)oth a structural and reduced form parameter since x, is exogenous). Hence, the 
nodel is exactly identified according to a simple order condition. More generally, 
here are q +2  structural parameters (3, a, 01 . . . .  ,0q) and 2q + 1 reduced form 
mrameters ('t0, 71,.-., 7q, 01 . . . . .  Oq) in this model. According to the order condi= 
ions, therefore, the model is overidentified if q > 1. 

Treatments of identification in more general models focus on the properties of 
he cross-equation restrictions in more complex versions of eq. (4.4). Wallis (1980) 
ives conditions for identification for a class of rational expectations models; the 
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conditions may be checked in particular applications. Blanchard (1982) has 
derived a simple set of identification restrictions for the case where x t in (4.2) is 
autoregressive and has generalized this to higher order multivariate versions of 
(4.1) and (4.2). 

4.3. H ypo the s i s  test ing 

Tests of the rational expectations assumption have generally been constructed as 
a test of the cross-equation constraints. These constraints arise because of the 
rational expectations assumption. In the previous example, the null hypothesis 
that the cross-equation constraints in (4.5) hold can be tested against the 
alternative that (4.5) is a fully unconstrained moving average model by using a 
likelihood ratio test. Note, however, that this is a joint test of rational expecta- 
tions and the specification of the model. Testing rational expectations against a 
specific alternative like adaptive expectations usually leads to non-nested hy- 
potheses. 

In more general linear models, the same types of cross-equation restrictions 
arise, and tests of the model can be performed analogously. However, for large 
systems the fully unconstrained ARMA model may be difficult to estimate 
because of the large number of parameters. 

4.4. L i m i t e d  information est imation methods  

Three different types of "limited information" estimates have been used for 
rational expectations models. These can be described using the model in (4.1) and 
(4.2). One method investigated by Wallis estimates (4.2) separately in order to 
obtain the parameters 01 ..... Oq. These estimates then are taken as given (as 
known parameters) in estimating (4.3). Clearly this estimator is less efficient than 
the full information estimator, but in more complex problems the procedure saves 
considerable time and effort. This method has been suggested by Wallis (1980) 
and has been used by Papell (1984) and others in applied work. 

A second method proposed by Chow (1983) and investigated by Chow and 
Reny (1983) was mentioned earlier in our discussion of nonuniqueness. This 
method does not impose the saddle point stability constraints on the model. It 
leads to an easier computation problem than does imposing the saddle point 
constraints. If the investigator does not have any reason to impose this constraint, 
then this could prove quite practical. 

A third procedure is to estimate eq. (4.1) as a single equation using instrumen- 
tal variables. Much work has been done in this area in recent years, and because 
of computational costs of full information methods it has been used frequently in 
applied research. Consider again the problem of estimating eq. (4.1). Let e t = 

E t Y t + l  - Y,+I be the forecast error for the prediction of Yr. Substitute EtYt+ 1 into 
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(4.1) to get 

2045 

Yt = o ly t+l  -[- ~Xt  "[- Vt -- ° te t+l"  (4.6) 

By finding instruments of variables for Yt + 1 that are uncorrelated with v t and e t+ a 

one can estimate (4.6) using the method of instrumental variables. In fact this 
estimate would simply be the two stage least squares estimate with Yt+ 1 treated as 
if it were a right-hand side endogenous variable in a conventional simultaneous 
equation model. Lagged values of x t could serve as instruments here. This 
estimate was first proposed by McCallum (1976). 

Several extensions of MeCallum's method have been proposed to deal with 
serial correlation problems including Cumby, Huizinga and Obstfeld (1983), 
McCallum (1979), Hayashi and Sims (1983), Hansen (1982), and Hansen and 
Singleton (1982). A useful comparison of the efficiency of these estimators is 
found in Cumby, Huizinga and Obstfeld (1983). 

5. General linear models 

A general linear rational expectations model can be written as 

B o y t +  B l y  t 1.-I- . . .  + B p y  t p + A 1 E y t + l  + . . .  + A Eyt+ = C u t ,  (5.1) 
t q t  q 

where Yt is a vector of endogenous variables, u t is a vector of exogenous variables 
or shocks, and Ai, Bi and C are matrices containing parameters. 

Two alternative approaches have been taken to solve this type of model. Once 
it is solved, the policy evaluation and estimation methods discussed above can be 
applied. One approach is to write the model as a large first-order vector system 
directly analogous to the 2-dimensional vector model in eq. (2.50). The other 
approach is to solve (5.1) directly by generalizing the approach taken to the 
second-order scalar model in eq. (2.86). The first approach is the most straightfor- 
ward. The disadvantage is that it can easily lead to very large (although sparse) 
matrices with high-order polynomials to solve to obtain the characteristic roots. 
This type of generalization is used by Blanchard and Kahn (1980) and Anderson 
and Moore (1984) to solve deterministic rational expectations models. 

5.1.  A g e n e r a l  f i r s t - o r d e r  v e c t o r  m o d e l  

Equation (5.1) can be written as 

E z t +  1 = A z  t q- D u t ,  
t 

(5.2) 
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by stacking Yt, Y t - 1 , . . . , Y t - p  into the vector z t much as in eq. (2.50). (It is 
necessary that  A q  be nonsingular to write (5.1) as (5.2)). Anderson and Moore 
(1984) have developed an algorithm that reduces equations with a singular A q  

into an equivalent form with a nonsingular matrix coefficient of Yt+q and have 
applied it to an econometric model of the U.S. money market. (Alternatively, 
Preston and Pagan (1982, pp. 297-304) have suggested that a "shuffle" algorithm 
described by  Luenberger (1977) be used for this purpose). In eq. (5.2) let z t be an 
n-dimensional  vector and let u t be an m dimensional vector of stochastic 
disturbances. The matrix A is n × n and the matr ix  D is n ~< m. 

We  describe the solution for the case of unanticipated temporary shocks: 
u t = e t where e t is a serially uncorrelated vector with a zero mean. Alternative 
assumptions about u t can be handled by the methods discussed in Section 2.2. 
The solution for z t can be written in the general form: 

oo 
Zt = E 17t'Et--i, (5 .3 )  

i = o  

where the F, are n x m matrices of unknown coefficients. Substituting (5.3) into 
(5.2) we get 

G = A r o + D ,  

F +I = i = 1 ,2  . . . . .  (5 .4)  

Note  that these matrix difference equations hold for each column of F i sep- 
arately; that  is 

Yl = AYo + d,  

3%1 = A Y i  i = 1 , 2  . . . . .  (5.5) 

where 7i is any one of the n x l  column vectors in F, and where d is the 
corresponding column of D. Eq. (5.5) is a deterministic first-order vector dif- 
ference equation analogous to the stochastic difference equation in (5.2). The 
solution for the F/ i s  obtained by solving for each of the columns of F, separately 
using (5.5). 

The analogy from the 2-dimensional case is now clear. There are n equations in 
(5.5). In a given application we will know some of the elements of 7o, but not all 
of them. Hence, there will generally be more than n unknowns in (5.5). The 
number  of unknowns is 2n - k where k is the number of values of 7o which we 
know. For  example, in the simple bivariate case of Section 2 where n = 2, we 
know that the second element of ~'0 equals 0. Thus, k =1  and there are 3 
unknowns and 2 equations. 



Ch. 34: Stabilization Policy in Macroeconomic Fluctuations 2047 

To get a unique solution in the general case, we therefore need (2n - k ) -  n = n 
- k additional equations. These additional equations can be obtained by requir- 
ing that the solution for Yt be stationary or equivalently in this context that the 2/~ 
do not explode. If there are exactly n - k distinct roots of A which are greater 
than one in modulus, then the saddle point manifold will give exactly the number 
of additional equations necessary for a solution. The solution will be unique. If 
there are less than n -  k roots then we have the same nonuniqueness problem 
discussed in Section 2. 

Suppose this root condition for uniqueness is satisfied. Let the n - k roots of A 
that are greater than one in modulus be ~1 . . . . .  ~kn_ k. Diagonalize A as H ~AH = 
A. Then 

HTi+I=AHYi i = 1 , 2  . . . . .  

//21 g22Jl'yi(2+)l] 0 

(5.6) 

0 ) [  a l l  ,121/]//(1) I i = 1 , 2  . . . .  , (5.7) 
A2 1H2a H22}lVl (2,1 

where A 1 is a diagonal matrix with all the unstable roots on the diagonal. The 7 
vectors are partitioned accordingly and the rows (Hll ,  H~2 ) of H are the char- 
acteristic vectors associated with the unstable roots. Thus, for stability we require 

nil 'Y1 (1) + n l2 ] t l  (2) = O. (5.8) 

These n -  k equations define the saddle point manifold and are the additional 
n -  k equations needed for a solution. Having solved for 3'1 and the unknown 
elements of 7o we then obtain the remaining 7i coefficients from 

y i ( ' )  = - H l q l H 1 2 Y / C 2 )  i = 2 . . . . .  ( 5 . 9 )  

y[+2)1 : A 2"y[ 2) i = 1,2 . . . . .  (5.10) 

5.2. Higher order vector models 

Alternatively the solution of (5.1) can be obtained directly without forming a 
large first order system. This method is essentially a generalization of the scalar 
method used in Section 2.4. Very briefly, by substituting the general solution of Yt 
into (5.1) and examining the equation in the F/ coefficients the solution can be 
obtained by factoring the characteristic polynomial associated with these equa- 
tions. 

This approach has been used by Hansen and Sargent (1981) in an optimal 
control example where p = q and B i = hA~. In that case, the factorization can be 
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shown to be unique by an appeal to the factorization theorems for spectral 
density matrices. A similar result was used in Taylor (1980a) in the case of a 
factoring spectral density functions. 

In general econometric applications, these special properties on the A i and Bi 
matrices do not hold. Whiteman (1983) has a proof that a unique factorization 
exists under conditions analogous to those placed on the roots of the model in 
Section 5.1. Dagli and Taylor (1983) have investigated an iterative method to 
factor the polynomials in the lag operator in order to obtain a solution. This 
factorization method was used by Rehm (1982) to estimate a 7-equation rational 
expectations model of the U.S. using full information maximum fikelihood. 

6. Techniques for nonlinear models 

As yet there has been relatively little research with nonlinear rational expectations 
models. The research that does exist has been concerned more with solution and 
policy evaluation rather than with estimation. Fair and Taylor (1983) have 
investigated a full-information estimation method for a non-linear model based 
on a solution procedure described below. However, this method is extremely 
expensive to use given current computer technology. Hansen and Singleton (1982) 
have developed and applied a limited-information estimator for nonlinear models. 

There are a number of alternative solution procedures for nonlinear models 
that have been investigated in the literature. They generally focus on deterministic 
models, but can be used for stochastic analysis by stochastic simulation tech- 
niques. 

Three methods are reviewed here: (1) a "multiple shooting" method, adopted 
for rational expectations models from two-point boundary problems in the 
differential equation literature by Lipton, Poterba, Sachs, and Summers (1982), 
(2) an "extended path" method based on an iterative Gauss-Seidel algorithm 
examined by Fair and Taylor (1983), and (3) a nonlinear stable manifold method 
examined by Bona and Grossman (1983). This is an area where there is likely to 
be much research in the future. 

A general nonlinear rational expectation model can be written 

f i (Y t ,  Yt--1 . . . .  ,Y t -p ,  Eyt+l . . . . .  Eyt+q,°li,  x t ) ~ u i t  , (6.1) 

for i =1 , . . . ,  n, where Yt is an n dimensional vector of endogenous variables at 
time t ,  x t is a vector of exogenous variables, % is a vector of parameters, and uit  

is a vector of disturbances. In some write-ups, (e.g. Fair-Taylor) the viewpoint 
date on the expectations in (6.1) is based on information through period t -  1 
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rather than through period t. For continuity with the rest of this paper, we 
continue to assume that the information is through period t, but the methods can 
easily be adjusted for different viewpoint dates. We also distinguish between 
exogenous variables and disturbances, because some of the nonlinear algorithms 
can be based on known future values of x t rather than on forecasts of these from 
a model like (2.2). 

6.1. Multiple shooting method 

We described the shooting method to solve linear rational expectations models in 
Section 2.5. This approach is quite useful in nonlinear models. The initial 
conditions are the values for the lagged dependent variables and the final 
conditions are given by the long-run equilibrium of the system. In this case, a 
system of nonlinear equations must be solved using an iterative scheme such as 
Newton's  method. One difficulty with this technique is that (6.1) is explosive when 
solved forward so that very small deviations of the endogenous variables from the 
solution can lead to very large final values. If this is a problem then the shooting 
method can be broken up in the series of shootings (multiple shooting) over 
intervals smaller than (0, j ) .  For  example three intervals would be (0, Jl), (Jl, J2) 
and (J2, J)  for 0 < Jl < J'2 < J- In effect the relationship between the final values 
and the initial values is broken up into a relationship between intermediate values 
of these variables. The intervals can be made arbitrarily small. This approach has 
been used by Summers (1981) and others to solve rational expectations models of 
investment and in a number of other applications. It seems to work very well. 

6. 2. Extended path method 

This approach has been examined by Fair and Taylor (1983) and used to solve 
large-scale nonlinear models. Briefly it works as follows. Guess values for the 
E,yt+ j in eq. (6.1) for j = 1, . . . ,  J. Use these values to solve the model to obtain a 
new path for Yt+j. Replace the initial guess with the new solution and repeat the 
process until the path Yt+j, J = 1 . . . . .  J converges, or changes by less than some 
tolerance range. Finally, extend the path from J to J + 1 and repeat the previous 
sequence of iterations. If the values of Yt+j on this extended path are within the 
tolerance range for the values of J + 1, then stop; otherwise extend the path one 
more period to J + 2 and so on. Since the model is nonlinear, the Gauss-Seidel 
method is used to solve (6.1) for each iteration given a guess for Yt+j- There are no 
general proofs available to show that this method works for an arbitrary nonlin- 
ear model. When applied to the linear model in Section (2.1) with ]a] <1 the 
method is shown to converge in Fair and Taylor (1983). When la] >1,  the 
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iterations diverge. A convergence proof for the general linear model is not yet 
available, but many experiments have indicated that convergence is achieved 
under the usual saddle path assumptions. This method is expensive but is fairly 
easy to use. An empirical application of the method to a modified version of the 
Fair model is found in Fair and Taylor (1983) and to a system with time varying 
parameters in Taylor (1983). Carlozzi and Taylor (1984) have used the method to 
calculate stochastic equilibria. This method also appears to work well. 

6. 3. Nonlinear saddle path manifold method 

In Section (2.4) we noted that the solution of the second-order linear difference 
eq. (2.88) is achieved by placing the solution on the stable path associated with 
the saddle point line. For nonlinear models one can use the same approach after 
linearizing the system. The saddle point manifold is then linear. Such a lineariza- 
tion, however, can only yield a local approximation. 

Bona and Grossman (1983) have experimented with a method that computes a 
nonlinear saddle-point path. Consider a deterministic univariate second-order 
version of (6.1): 

f (Yt+l,  Yt, Yt_l)=O, i = 1 , 2 , . . . .  (6.2) 

A solution will be of the form 

y t=g(y t_ l ) ,  (6.3) 

where we have one initial condition Y0- Note that eq. (6.2) is a nonlinear version 
of the homogeneous part of eq. (2.88) and eq. (6.3) is a nonlinear version of the 
saddle path dynamics (2.91). 

Bona and Grossman (1983) compute g(-) by a series of successive approxima- 
tions. If eq. (6.3) is to hold for all values of the argument of g then 

f ( g ( g ( x ) ) , g ( x ) , x ) = O ,  (6.4) 

must hold for every value of x (at least within the range of interest). In the 
application considered by Bona and Grossman (1983) there is a natural way to 
write (6.4) as 

g ( x ) = h ( g ( g ( x ) ) , g ( x ) , x ) ,  (6.5) 

for some function h(-). For a given x eq. (6.5) may be solved using successive 
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approximations: 

g,+l (x)=h(g , (g , (x ) ) ,g , (x ) ,x ) ,  n : 0 , 1 , 2 , . . . .  (6.6) 

The initial function go(X) can be chosen to equal the linear stable manifold 
associated with the linear approximation of f ( . )  at x. 

Since this sequence of successive approximations must be made at every x, 
there are two alternative ways to proceed. One can make the calculations 
recursively for each point Yt of interest; that is, obtain a function g for x = Y0, a 
new function for x = Yl and so on. Alternatively, one could evaluate g over a grid 
of the entire range of possible values of "x, and form a "meta  function" g which is 
piecewise linear and formed by linear interpolation for the value of x between the 
grid points. Bona and Grossman (1983) use the first procedure to numerically 
solve a macroeconomic model of the form (6.2). 

It is helpful to note that when applied to linear models the method reduces to a 
type of undetermined coefficients method used by Lucas (1975) and McCallum 
(1983) to solve rational expectations models (a different method of undetermined 
coefficients than that applied to linear process (2.4) in Section 2 above). To see 
this, substitute a linear function Yt = gYt-1 into 

Ot 2 1 
Y t + l = ~ 1  y ' --  -~l Y t - 1 ,  (6.7) 

the deterministic difference equation already considered in eq. (2.88). The result- 
ing equation is 

g 2 _  2 1 )  
~ 1 1 g + ~  yt t=O .  (6.8) 

Setting the term in parenthesis equal to zero, yields the characteristic polynomial 
of (6.7) which appears in eq. (2.89). Under the usual assumption that one root is 
inside and one root is outside the unit circle a unique stable value of g is found 
and is equal to stable root X2 of (2.89). 

7. Concluding remarks 

As its title suggests, the aim of this chapter has been to review and tie together in 
an expository way the extensive volume of recent research on econometric 
techniques for macroeconomic policy evaluation. The table of contents gives a 
good summary of the subjects that I have chosen to review. In conclusion it is 
perhaps useful to point out in what ways the title is either overly inclusive or not 
inclusive enough relative to the subjects actually reviewed. 
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All of the methods reviewed-est imation,  solution, testing, opt imiza t ion-  
involve the rational expectations assumption. In fact the title would somewhat 
more  accurately identify the methods reviewed if the work "new"  were replaced 
by " ra t iona l  expectations". Some other new econometric techniques not reviewed 
here that have macroeconomic policy applications include the multivariate time 
series methods  (vector auto-regressions, causality, exogeneity) reviewed by Geweke 
(1983) in Volume 1 of the Handbook of  Econometrics, the control theory methods 
reviewed by  Kendrick (1981) in Volume 1 of the Handbook o f  Mathematical 

Economics, and the prediction methods reviewed by Fair (1986) in this volume. 
On the other hand some of the estimation and testing techniques reviewed here 
were designed for other applications even though they have proven useful for 
policy. 

Some of the topics included were touched on only briefly. In particular the 
short t reatment  of limited information estimation techniques, time inconsistency, 
and stochastic general equilibrium models with optimizing agents does not give 
justice to the large volume of research in these areas. 

Most  of the research reviewed here is currently very active and the techniques 
are still being developed. (About ] of the papers in the bibliography were 
published between the time I agreed to write the review in 1979 and the period in 
1984 when I wrote it.) The development of computationally tractable ways to deal 
with large and in particular non-linear models is an important  area that needs 
more work. But in my view the most useful direction for future research in this 
area will be  in the applications of the techniques that have already been 
developed to practical policy problems. 
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