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Abstract

Deferred-acceptance auctions choose allocations by an iterative

process of rejecting the least attractive bid. These auctions have

distinctive computational and incentive properties that make them

suitable for application in some challenging environments, such as the

planned US auction to repurchase television broadcast rights. For any

set of values, any deferred acceptance auction with “threshold pric-

ing”is weakly group strategy-proof, can be implemented using a clock

auction, and leads to the same outcome as the complete-information

Nash equilibrium of the corresponding paid-as-bid auction. A paid-as-

bid auction with a non-bossy bid-selection rule is dominance solvable

if and only if it is a deferred acceptance auction.
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1 Introduction

We study a class of heuristic auctions for computationally challenging re-

source allocation problems. The application that motivates this study arises

from the US government’s effort to reallocate channels currently allocated

for television broadcasting to use for wireless broadband services. This real-

location involves purchasing television broadcast rights from some TV sta-

tions, reassigning (“repacking”) the remaining over-the-air broadcasters into

a smaller set of channels, using the cleared spectrum to create licenses suit-

able for use in wireless broadband, and selling those licenses to cover the costs

of acquiring broadcast rights.1 The repacking of about 2,000 TV stations

must be done in a way that satisfies about 130,000 interference constraints,

which dictate which pairs of stations could not be assigned to the same or

adjacent channels. Even determining whether a given set of broadcasters

can be feasibly assigned to the available set of channels is a computationally

challenging problem, equivalent to the NP-hard “graph coloring problem”

(see Aardal et al. (2007)). The problem of selecting the set of stations to

maximize the total broadcast value in the remaining TV spectrum is an even

harder computational problem, which cannot be solved exactly in reasonable

time using today’s state-of the art algorithms and hardware. This creates a

challenge for designing a strategy-proof auction: for example, the approxi-

mation error in computing Vickrey prices would be quite large relative to the

bids of individual bidders, potentially creating large incentives for misrepre-

senting preferences.2

1Middle Class Tax Relief and Job Creation Act of 2012, Pub. L. No. 112-96, §§ 6402,
6403, 125 Stat. 156 (2012). The legislation aims to make it possible to reallocate spectrum
from a lower-valued use to a higher-valued one, generating billions in net revenues for the
federal government.

2The problem of designing computationally feasible economic mechanisms is studied
in the field of “Algorithmic Mechanism Design”(Nisan and Ronen (1999)). While econo-
mists have long been concerned about the computational properties of economic allocation
mechanisms (e.g., see Hayek (1945)), the formal economic literature has focused on model-
ing communication costs (e.g., Hurwicz 1977, Mount and Reiter 1974, Segal 2007), which
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Our proposed solution is to use the class of “deferred-acceptance”(DA)

auctions, which generalize the idea of the eponymous matching algorithms of

Gale and Shapley (1962) and Kelso and Crawford (1982) and related clock

auction designs, such as the simultaneous multiple-round auctions used for

radio spectrum sales. These auctions are iterative processes in which the

highest scoring (and hence least attractive) bids are rejected in each round

and the bids left standing at the end are accepted.

For concreteness, we focus on the procurement setting (the modification

to the selling setting is straightforward). We also restrict attention to set-

tings in which each bidder is “single-minded,”meaning that it offers one good

(or bundle of goods) for sale and cares only about winning or losing and the

amount of its compensation. A DA auction in this setting is based on the

following kind of DA algorithm: All the bids are initially active. In each

iteration, each bid is assigned a non-negative “score” according to a scor-

ing function whose arguments include the bid amount, the bidder’s identity,

the remaining set of active bidders, and the amounts and identities of the

previously rejected bids. If no active bid has a positive score, the algorithm

terminates and the remaining active bids become winning. Otherwise, the

algorithm rejects the active bid with the highest non-zero score, removing it

from the active set, and iterates. Different scoring rules lead to different DA

algorithms.

Deferred-acceptance auctions are sealed-bid mechanisms that select win-

ning bids using a DA algorithm and make payments only to winning bidders.

In particular, we consider auctions that pay each winning bidder his threshold

price, defined as the highest bid he could have made while still winning, hold-

ing all the other bids fixed. It is routine to show that any deferred-acceptance

threshold auction, which uses a DA algorithm to select winners and pays each

winner its threshold price, is a strategy-proof auction.

By selecting a suitable scoring rule, the DA auctions can achieve a variety

are trivial in the setting of single-minded bidders considered in this paper.
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of different goals and can be shown to nest several previously studied auc-

tions. If the goal is to implement an effi cient allocation subject to constraints

that have a matroid structure (informally, when adding one bidder displaces

at most one other bidder), that can be achieved exactly using the “stan-

dard”DA algorithm of Bikhchandani et al. (2011), in which all active bids

are scored by their bid values. In settings with more complex constraints, DA

algorithms may not be able to achieve exact effi ciency, but may still approx-

imate it fairly closely. For example, a DA auction can implement Dantzig’s

(1957) greedy algorithm for the “knapsack problem,”in which there is a con-

straint on the total “volume”of the rejected bids. For the FCC’s repacking

problem, our simulations using appropriate scoring for stations based on their

interference constraints have generated outcomes, for sample station values,

that are within percentage points of exact effi ciency.3

In some cases, effi ciency is not the only or even the primary requirement.

For example, the auctioneer may face a hard budget constraint (as the FCC

may in its repacking problem). DA threshold auctions can respect such con-

straints, nesting the budget-constrained mechanisms previously studied by

McAfee (1992), Moulin (1999), Juarez (2007), Mehta et al. (2007), Singer

(2010), and Ensthaler and Giebe (2014). Another potentially important goal

may be to minimize the procurement cost. If bidder values are drawn inde-

pendently from known distributions, then bids in DA auctions can be scored

according to the corresponding virtual values of Myerson (1991). In that

case, if the constraints have a matroid structure, the upshot is an expected-

cost minimizing auction. Alternatively, if bidder values are drawn i.i.d. from

a single unknown distribution, then expected costs can be reduced by scoring

the still-active bids using already-rejected bids (similarly to the “yardstick

3The auction requires checking in every round whether any given active station could
be feasibly rejected and added to the already-assigned stations with possible repacking.
While this is an NP-hard computational problem, it turns out that this computation could
be sped up to a matter of seconds. When the computation does time out, which happens
occasionally, we treat the answer as infeasibility and so cannot reject the bidder.
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competition”in Segal (2003)).

The main theoretical contribution of the paper lies in establishing sev-

eral nice properties shared by all DA threshold auctions. First, we establish

an equivalence between the sets of DA threshold auctions and descending

“clock”auctions. Intuitively, similarly to a DA auction, a clock auction itera-

tively rejects the bids that are currently the least attractive to the auctioneer,

but unlike the DA auction it permits the rejected bidders to remain active

by improving their bids by some minimal bid increment. Formally, we show

that for every sealed-bid DA threshold auction with finite bid spaces, there

exists an equivalent descending clock auction that generates the same alloca-

tion and payments, and vice versa. Given the theoretical equivalence, clock

auctions may be preferable for many practical applications, because they (i)

make strategy-proofness self-evident even for bidders who misunderstand or

mistrust the auctioneer’s calculations (see Kagel (1987) for experimental ev-

idence), (ii) do not require winning bidders to reveal or even figure out their

exact values, and (iii) permit information feedback so as to better aggregate

common-value information.

A second nice property is that DA threshold auctions and the corre-

sponding clock auctions are weakly group strategy-proof: no coalition of

bidders has a joint deviation from truthful bidding that is strictly profitable

for all members of the coalition. For the clock auctions, this property holds

regardless of what information is disclosed to bidders during the auction.

This result extends weak group strategy-proofness results obtained earlier

by Moulin (1999), Mehta et al. (2007), and Hatfield and Kojima (2009).

A third set of results stems from our investigation of the acquisition cost

achieved by DA threshold auctions compared to similar paid-as-bid mecha-

nisms. The challenges in making this comparison are two. First, our setting

is too complicated to allow Bayesian equilibrium analysis of paid-as-bid auc-

tions, so we are limited to full-information equilibrium. Second, even with

full-information equilibrium, paid-as-bid auctions based on optimization are
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known to have many different Nash equilibrium outcomes, so we need to

explore that possible multiplicity for DA auctions as well. Our next two

findings concern equilibrium properties of DA paid-as-bid auctions that are

surprisingly similar to those of paid-as-bid auctions for a single item. These

familiar properties have not been reported for other multi-item auctions,

and our third finding explains why: every multi-item paid-as-bid auction

with these familiar properties is a DA-auction. The findings are as follows.

First, every paid-as-bid DA auction has a full-information Nash equilibrium

that generates the same outcome as the threshold auction using the same DA

algorithm. Second, when we limit attention to “non-bossy”DA algorithms
4 and to generic bidder values, the DA paid-as-bid auction has a unique un-

dominated Nash equilibrium outcome and a unique outcome that survives

iterated elimination of weakly dominated strategies, and both coincide with

the dominant-strategy outcome of the corresponding DA threshold auction.

Third, these properties are enjoyed only by DA auctions: any non-bossy

paid-as-bid auction that is generically dominance solvable is a DA auction.

To highlight further how special the properties of DA auctions are, we

compare the properties of other auctions with single-minded bidders in which

winning bids are selected in two other familiar ways. First, some auctions

are based on optimization, in which the collection of winning bids is the one

that minimizes the total bid. When the constraints have a matroid struc-

ture that ensures that bidders are substitutes, these auctions can be imple-

mented as DA auctions and therefore have all the nice properties described

above, but otherwise they do not: they (i) cannot be implemented as clock

auctions,5 (ii) are not weakly group strategy-proof, and (iii) yield thresh-

old prices (Vickrey prices) that result in a higher procurement cost than

4These are algorithms for which a bidder cannot alter any part of the allocation without
changing his own allocation.

5Ausubel and Milgrom (2002) propose a “cumulative-offer” clock auction which im-
plements effi ciency, but this auction requires the ability to “recall” exited bids, and this
violates strategy-proofness.
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the full-information Nash equilibria of the corresponding paid-as-bid auc-

tion (see Ausubel and Milgrom (2006), Bernheim and Whinston (1986)).6

Second, Lehmann et al. (2002) introduced a class of auctions that select

winners using a “greedy-acceptance” algorithm, meaning that which bids

are accepted iteratively until certain constraints are satisfied.7 In general,

these greedy-acceptance auctions permit the calculation of threshold prices

that ensure strategy-proofness, and they can achieve good approximations

of effi ciency in some interesting, computationally challenging applications.

Furthermore, when the constraints have a matroid structure (meaning that

bidders are substitutes for the auctioneer), there exists a greedy-acceptance

algorithm that coincides both with the Vickrey auction and with its corre-

sponding DA auction. However, as we show in Appendix A by means of

an example, greedy-acceptance algorithms do not generally enjoy any of the

other nice properties described above: they (i) cannot be implemented as

clock auctions, (ii) are not weakly group strategy-proof, and (iii) can result

in a higher procurement cost than some full-information undominated Nash

equilibrium of the corresponding paid-as-bid auction.

The paper is organized as follows: Section 2 illustrates a simple deferred-

acceptance auction in a three-bidder example and contrasts its properties

with those of the Vickrey auction. Section 3 introduces our general model

and characterizes strategy-proof sealed-bid auctions in our setting. Section 4

introduces general deferred-acceptance auctions. Section 5 provides several

examples of useful DA auctions. Section 6 introduces descending-clock auc-

tions in which winners are paid their final clock prices and shows the equiv-

6Indeed, this high costs/low revenue problem of the Vickrey auction is the motiva-
tion for the proposed “core-selecting auctions” (Day and Milgrom 2008), which sacrifice
strategy-proofness in order to increase revenue. The present paper proposes a different
solution to the problem, preserving strategy-proofness but sacrificing the effi ciency of out-
come according to the bids. (Of course, core-selecting auctions only guarantee that the
outcome is effi cient according to the bids, and so effi ciency of outcome according to true
values is not ensured given the gaming opportunities generated by these auctions.)

7For other examples of such auctions, see also Mu’alem and Nisan (2008), Babaioff and
Blumrosen (2008), and the references therein.
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alence between these auctions and DA threshold auctions. Section 7 shows

that descending clock auctions (and the equivalent threshold-price DA auc-

tions) are weakly group strategy-proof. Section 8 analyzes paid-as-bid DA

auctions, deriving their properties described above. Section 9 concludes with

a discussion of how some of these results might be used for the FCC’s auction

design problem.

2 A Simple Example

In this section, we compare a DA auction with a Vickrey auction in a simple

setting to illustrate some advantages of DA auctions beyond computational

simplicity. In our example, the bidders are three TV stations (labelled 1,2,3)

bidding to relinquish broadcast rights in a reverse auction, with only a single

channel available to assign the losing bidders. Stations 1 and 2 are “periph-

eral” stations that can be assigned to broadcast on the same channel, but

either of them would interfere with the “central”station 3. Thus, the auc-

tioneer needs to choose between clearing the desired spectrum by acquiring

station 3 (assigning both stations 1 and 2 to the remaining channel) and

doing it by acquiring stations 1 and 2 (assigning station 3).8 Suppose the

three stations bid respective amounts b1, b2, b3 to be paid for relinquishing

their broadcast rights.

In this setting, the Vickrey auction implements the effi cient allocation,

which is to acquire stations 1 and 2 when b1+b2 ≤ b3 and station 3 otherwise.

(For concreteness, we break ties in favor of the lower-numbered bidders.) If

the auction acquires stations 1 and 2, the Vickrey payments to them are

b3 − b2 and b3 − b1, respectively. A first concern about the Vickrey auction
is that it allows stations 1 and 2 to raise each other’s payments by reducing

their bids, and in particular to each obtain the maximal payment of b3 by

8It is also feasible, but clearly suboptimal, to acquire and clear station combinations
{1,3}, {2,3}, and {1,2,3}.
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both bidding zero. This demonstrates the fact that the Vickrey auction is

not (even weakly) group strategyproof. Second, the total payment to bidders

1 and 2, which equals 2b3− b1− b2, exceeds station 3’s value b3. In contrast,
in the paid-as-bid auction in which the auctioneer selects the cost-minimizing

combination of bids (a “menu auction”of Bernheim and Whinston (1986)),

there is no full-information Nash equilibrium in which the total payment to

bidders 1 and 2 exceeds bidder 3’s value, since bidder 3 could have profitably

deviated by undercutting b1 + b2. In the general setting, Vickrey payments

are sometimes higher, but never lower, than those in the full-information

equilibrium of the corresponding paid-as-bid (“menu”) auction (Ausubel and

Milgrom (2006)).

The DA threshold auctions proposed in this paper are weakly group strat-

egyproof, and do not cost more than the corresponding paid-as-bid equilib-

rium cost, but sacrifice the requirement of always choosing the effi cient allo-

cation given the bids. (In contrast, the “core-selecting auctions”(Day and

Milgrom (2008)) address the revenue shortfall problem by modifying transfers

but insisting on the effi cient allocation, which sacrifices strategyproofness.)

A DA threshold auction in this setting begins with all bidders active and,

in each round, irreversibly rejects the bidder with the highest positive score,

where any bid that cannot be feasibly rejected gets a score of zero. For a

simple example, suppose that bidders 1 and 2 are given scores equal to their

bids b1, b2 so long as they are feasible, while bidder 3 is given a score equal

to b3/w3. (The factor w3 ≥ 1 is interpreted as the bidder’s “volume”, to

account for the greater interference it creates.) With these scores, the DA

algorithm acquires stations 1 and 2 if both b1, b2 ≤ b3/w3 (so that station 3

is rejected in the first round), and acquires station 3 otherwise. To ensure

strategyproofness, when stations 1 and 2 are acquired, each of them is paid

b3/w3 (this is the station’s “threshold price,”which is its maximal bid that

would have still been accepted given the bids of the others). When station 3

is acquired, it is paid its “threshold price”w3 max {b1, b2}.

9



In contrast to the Vickrey auction, the DA threshold auction is weakly

group strategyproof, for if both bidders 1 and 2 both win, their bids do not

affect each other’s payments. The auction also satisfies a “revenue equiva-

lence”property: in a paid-as bid auction with the same allocation rule, when

the stations’true values satisfy b1, b2 ≤ b3/w3, the unique full-information

Nash equilibrium in weakly undominated strategies is for station 3 to lose

by bidding its true value b3, and for stations 1 and 2 to win by bidding their

“threshold prices”b3/w3. Finally, the threshold-price DA auction has a sim-

ple descending-price clock auction implementation: we start a per-volume

price p at a high level and let it descend continuously, permitting each bid-

der to exit at any point at which it is still feasible, and “freezing”the prices

to those bidders that can no longer feasibly exit. (For example, if station 3

is the one that exits first, at the clock price p = b3/w3, then the other two

stations are frozen at this price and the auction ends.) An advantage of this

clock auction is that it makes the optimality of truthful bidding self-evident:

a bidder could not benefit from either quitting at a price above his value or

staying at a price below his value. In contrast, the Vickrey auction described

above does not have a clock-auction implementation, bidders who are faced

with its sealed-bid form may fail to understand the optimality of truthful

bidding (see the experiments of Kagel et al. (1987)).

As described below, general DA auctions can use more general scoring

functions than the one described above, which may also vary from round to

round and may depend on the previously rejected bids. Nevertheless, all these

auctions have the nice properties mentioned above. At the same time, none

of these auctions would guarantee the achievement of an effi cient allocation

in this section’s example. Intuitively, this is because any DA auction would

reject the first bid based on the pairwise comparison of its score with those

of the other bids, rather than on the comparison of b1 + b2 to b3, which is

required to guarantee effi ciency.

In some important practical settings, guaranteeing effi ciency may be less
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important than other objectives, for any of the following reasons: (1) Exact

effi ciency may be unachievable due to computational problems. (2) Effi -

ciency may be undermined by bidder manipulation in mechanisms that are

not strategy-proof (such as core-selecting auctions or approximate-Vickrey

auctions) or not group strategy-proof (such as Vickrey auctions). (3) The

auction designer may be more interested in other objectives, such as pro-

curement cost, and may also face a budget constraint. In such settings, the

designer may be well served by using one of the class of DA auctions studied

in this paper.

3 Sealed-Bid Auctions

Let N be the set of bidders. In the auction, each bidder either “wins”

(which means that his bid to supply a given good or bundle of goods is

“accepted”) or “loses” (which means that his bid is rejected). We restrict

attention to mechanisms, which we call “auctions,”in which winning bidders

receive payments but losing bidders do not.

The preferences of each bidder i depend on whether he wins or loses, and,

if he wins, on the payment pi. We assume that these preferences are strictly

increasing in the payment and that there exists some payment vi that makes

him indifferent between winning and losing; we call vi his “value”.9 The set

of bidder i’s possible values is [0, vi] for each i.

We restrict each bidder to make bids in a finite set Bi ⊆ R+ and assume
that maxBi > vi. This ensures that a non-participation strategy is never

better for bidder i than bidding maxBi, so we can simplify our formulation

by not allowing non-participation.

A sealed-bid auction takes a bid bi ∈ Bi from each bidder i = 1, ..., N .

For every bid profile b ∈ B = ΠiBi, the auction’s allocation rule α : B → 2N

9For unmixed outcomes, such a preference can be expressed by a quasilinear utility
pi − vi when the bidder wins and zero when he loses.
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determines a set of winning bids α (b) ⊆ N and its payment rule p : B → RN

specifies a corresponding payment profile, with pi(b) = 0 for i ∈ N\α (b) (so

losing bidders are not paid). A sealed-bid auction is a triple 〈B,α, p〉.
With finite bid sets, it is convenient to replace the usual notion of “truth-

ful”bidding by a similar concept of “strategy-proofness” that applies even

when truthful reporting is infeasible because vi /∈ Bi. According to our de-

finition, an auction is strategy-proof if it is always optimal for a bidder to

round up its value to the next allowable bid.

Definition 1 The sealed-bid auction 〈B,α, p〉 is strategy-proof if for every
bidder i, vi ∈ [0, v̄i], and b−i ∈ B−i, it is optimal for bidder i to bid v+i ≡
min {bi ∈ Bi : bi > vi}.

The usual characterization of strategy-proof auctions applies in this set-

ting. For completeness, we restate it here.

Definition 2 The allocation rule α is monotonic if and only if i ∈ α (bi, b−i)

and b′i < bi imply i ∈ α (b′i, b−i).

Definition 3 A sealed-bid auction 〈B,α, p〉 is a threshold auction if and
only if α is monotonic and the price paid to any winning bidder i ∈ α(b)

satisfies the threshold pricing formula:

pi(b−i) = max {b′i ∈ Bi : i ∈ α (b′i, b−i)} . (1)

With these definitions, a standard argument implies the following result.

Proposition 1 A sealed-bid auction 〈B,α, p〉 is strategy-proof if and only if
it is a threshold auction.10

10It is obvious that a threshold auction is strategy-proof. For the converse, apply the
envelope theorem to see that the outcome function and strategy-proofness determine the
bidders’payoffs up to a constant of integration determined. Since losers must be paid zero
and have a payoff of zero, the strategy-proof payment function is unique.
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4 Deferred-Acceptance Auctions

Given a set of bidders N and possible bid profiles B, a deferred-acceptance

algorithm (DA) is specified by a collection of scoring functions
(
sAi
)
A⊆N,i∈A,

where for each A ⊆ N and each i ∈ A, the function sAi : Bi × BN\A → R+
is nondecreasing in its first argument. The algorithm operates as follows.

Let At ⊆ N denote the set of “active bidders”at the beginning of iteration

t. We initialize the algorithm with A1 = N . In each iteration t ≥ 1, if

sAti
(
bi, bN\At

)
= 0 for all i ∈ At then stop and output α(b) = At; otherwise,

let At+1 = At\ arg maxi∈At s
At
i

(
bi, bN\At

)
and continue. In words, the algo-

rithm iteratively rejects the least desirable (highest-scoring) bids until only

zero scores remain. We say that the DA algorithm computes allocation rule

α if for every bid profile b ∈ B, when the algorithm stops the set of active

bidders is exactly α (b).

By inspection, every DA algorithm is finite and computes a monotonic

allocation rule. Thus, we can define a DA threshold auction as a sealed-

bid auction which computes its allocation using a DA algorithm and makes

the corresponding threshold payments (1) to the winners. Like any thresh-

old auction, each DA threshold auction is strategy-proof. Furthermore, the

threshold prices can be computed in the course of the DA algorithm, by ini-

tializing the prices as p0i = supBi for all i, and then updating them in each

round t ≥ 1 as follows:

pti(b) = min
{
pt−1i (b), sup

{
b′i ∈ Bi : sAti

(
b′i, bN\At

)
< sAtj

(
bj, bN\At

)
for j ∈ At\At+1

}}
for every bidder i ∈ At+1. In the final round of the algorithm, for every

winner i ∈ AT , pTi (b) is the winner’s threshold price.
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5 Examples of Deferred-Acceptance Auctions

Example 1 (Feasibility and Non-Wastefulness) Suppose that it is only
feasible for the auctioneer to acquire products from a subset of bidders A ∈ F ,
where F ⊆ 2N is a given family of sets, with N ∈ F (so that feasibility is

achievable).11 To ensure that the algorithm maintains feasibility, we require

that sAi
(
bi, bN\A

)
> 0 only if A\ {i} ∈ F , and that there are no ties, i.e.,

sAi
(
bi, bN\A

)
6= sAj

(
bj, bN\A

)
for all i 6= j, A, bi, bj, bN\A.

Say that the family F is comprehensive if A ∈ F and A ⊆ A′ imply

A′ ∈ F (i.e., F has “free disposal”of winners). Say that the algorithm has

perfect feasibility checking if sAi
(
bi, bN\A

)
> 0 if and only if A\ {i} ∈ F —

that is, it stops only when it is infeasible to reject any more active bids. If

both conditions hold, then the algorithm has the desirable property of non-

wastefulness — i.e., it stops at a minimal set A ∈ F . (Indeed, if there is
some A′ ∈ F that is a strict subset of A, then for each i ∈ A\A′ we have
A\ {i} ∈ F by comprehensiveness, and therefore sAi

(
bi, bN\A

)
> 0 by perfect

feasibility checking, hence the algorithm cannot stop at A.)

In some settings, however, perfect feasibility checking may be computa-

tionally impossible, and imperfect checking must be used instead. For ex-

ample, in the FCC’s spectrum-clearing problem, a given set A of bidders is

in F when there exists an assignment of the rejected bidders N\A to avail-

able channels that satisfies all interference constraints (as formalized in (3)

below), so checking that requires solving an NP-hard problem. When a fea-

sibility checker has a limited time to run on a computationally challenging

problem, it may generate one of the following three outputs: (i) a proof that

A\ {i} ∈ F (which consists of a feasible assignment of bidders (N\A) ∪ {i}
to channels), (ii) a proof that A\ {i} /∈ F (which could be a long logical argu-
ment), or (iii) a time-out, which means that the algorithm had to be termi-

nated before producing either (i) or (ii). In case (i), we set sAi
(
bi, bN\A

)
> 0,

11E.g., in the example of Section 2, F = {{1, 2} , {3} , {1, 3} , {2, 3} , {1, 2, 3}}.
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while in cases (ii) and (iii), we need to set sAi
(
bi, bN\A

)
= 0 in order to guar-

antee that the algorithm always yields a feasible assignment. Without perfect

feasibility checking, the outcome may not be non-wasteful.12

Example 2 (Optimization with Matroid Constraints) Suppose that the
goal is to find an “effi cient”(i.e. social cost-minimizing) set of winning bids

subject to the feasibility constraint in Example 1:

α (b) ∈ arg min
A∈F

∑
i∈A bi. (2)

Consider the “standard”DA algorithm that does perfect feasibility check-

ing and scores the bids that are feasible to reject by their bid amounts, i.e.,

sAi
(
bi, bN\A

)
=

{
bi when A\ {i} ∈ F ,
0 otherwise,

and assume that there are no ties

(i.e., bi 6= bj for i 6= j for each b ∈ B). By a classical result in matroid theory
(see Oxley (1992)), the standard DA algorithm computes an effi cient alloca-

tion rule α in this setting if and only if the set family {R ⊆ N : N\R ∈ F} —
i.e., the feasible sets of rejected bids —form the independent sets of a matroid

on the ground set N .13

12Note that if the set F is comprehensive, then once the infeasibility of adding a bidder
has been established, the bidder will remain infeasible to add in all the subsequent rounds,
hence there is no point in running the checker again for the same bidder. In contrast, if
the feasibility checker times out on a given bidder, it may be run again in the same station
in a subsequent round in which more computational time is available (e.g., overnight). If
the checker does find a feasible way to add this bidder, this will permit us to either in
reject the bidder or reduce his payment.
13This is closely related to the analysis of Bikchandani et al. (2011), who focus on

“selling”’auctions in which the family of sets of bids that could be feasibly accepted is
a matroid. For these settings, the DA heuristic achieving effi ciency is the “greedy worst-
out”heuristic: reject the lowest bid that could be rejected while the set of accepted bids
still forms a spanning set of the matroid. (Note that in contrast to the “standard”DA
procurement auction, the provisional allocation in the selling auction remains infeasible
until the end of the auction.) By the argument in Section 6 below, this DA heuristic
corresponds to the ascending-price clock auction of Bikchandani et al. (2011), which
offers the same ascending price to all the active bidders that could still be rejected. While
both the “greedy best-in”and the “greedy worst-out”algorithms can be used to compute
the effi cient allocation rule in both the procurement and selling matroid auctions, only one
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Intuitively, the matroid property in Example 2 involves a notion of “one-

for-one substitution”’ between bidders. (In particular, it implies that all

the maximal feasible sets of rejected bids — the “bases” of the matroid —

have the same cardinality.) This does not hold, even approximately, in the

FCC setting, which involves a trade-off between acquiring a larger number of

stations with smaller coverage areas and a smaller number of stations with

larger coverage areas, as illustrated in Section 2. In such cases, instead of

the standard DA algorithm it is desirable to use scoring that assigns greater

scores to larger stations, given the same bid values. This is illustrated in the

following stylized example:

Example 3 (Scoring for the Knapsack Problem) Suppose that the fam-
ily of feasible sets takes the form

F =
{
A ⊆ N :

∑
i∈N\Awi ≤ 1

}
.

The problem of maximizing total surplus subject to this constraint is known

as the “knapsack problem.” Interpreting wi > 0 as the “volume”’of bidder

i, the problem (2) is to minimize the total value of the accepted bids subject

to a constraint on their total volume.14 While this optimization problem

is NP-hard, it can be approximated with the famous heuristic of Dantzig

(1957), which corresponds to the DA algorithm with the “per-volume”scoring

sAi
(
bi, bN\A

)
=

{
bi/wi when A\ {i} ∈ F ,

0 otherwise.
.

In the FCC setting, keeping total procurement cost low is also an im-

portant goal. A cost-minimization objective can be easily handled using the

“virtual value”approach of Myerson (1981).

of them is a DA algorithm: it is the best-in algorithm for rejecting bids in the procurement
auction, and the worst-out algorithm for rejecting bids in the selling auction.
14Duetting, Gkatzelis and Roughgarden (2014) consider instead the “selling”problem in

which the accepted bids must fit into a knapsack, and examine the approximation power
of DA algorithms for this problem.

16



Example 4 (Scoring for Expected Cost Minimization) Suppose that

bidders’values vi are independently drawn from distributions Fi(v) = Pr{vi ≤
v}, and that Bi = [0, b̄i] for each i (so that bidding exact values is pos-

sible). Then, following the logic of Myerson (1981), the expected cost of

a threshold auction that implements allocation rule α can be expressed as

E
[∑

i∈α(v) γi (vi)
]
, where γi (vi) = (vi + Fi(vi)/F

′
i (vi)) (bidder i’s “virtual

cost function”). Assume the virtual cost functions are strictly increasing.

Then, if we are given a DA algorithm with scoring rule s that exactly or ap-

proximately minimizes the expected social cost subject to feasibility constraints

as in the above examples, it can be modified to yield a DA threshold auction

that exactly or approximately minimizes the total expected cost of procure-

ment subject to the constraints. The modified auction uses the scoring rule

ŝAi
(
bi, bN\A

)
= sAi

(
γi (bi) ,

(
γj (bj)

)
j∈N\A

)
.

The previous examples have used “fixed”scoring, which conditions only

on the bidder’s identity and his bid value. The following two examples

demonstrate two reasons why it may be useful to use “adaptive” scoring,

that is, to condition on the set of rejected bids and their bid values.

Example 5 (Adaptive Scoring for a Budget Constraint) Suppose that
the designer faces the “budget constraint”that the total payment to the win-

ners cannot exceed R (A) when the set of accepted bids is A ⊆ N . In order to

find a maximal set of winners satisfying the budget constraint, the algorithm

needs to continue whenever the total threshold prices to be paid to the winners

exceeds R (A). If the budget constraint is the only limit on procurement, then

the algorithm stops as soon as that limit is satisfied. For a simple example,

if scoring were based on increasing functions σi : Bi → R++ (depending only
on the i’s bid), then the threshold price that would have to be paid to any

currently active bidder i ∈ A if the algorithm were to stop right away is:

pi
(
bN\A

)
= sup

{
b′i ∈ Bi : σi (b

′
i) < max

j∈N\A
σj (bj)

}
.
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In this case, the “stopping rule”described above can be implemented via the

scoring functions

sAi
(
bi, bN\A

)
=

{
σi (bi) if

∑
j∈A pj

(
bN\A

)
> R (A) ,

0 otherwise.

These kinds of algorithms may be called “revenue-sharing”’algorithms, and

their mirror images for the “selling”’auction are the “cost-sharing”’algo-

rithms of Moulin (1999) and Mehta et al. (2009). (While this formulation

permits the auction to generate a positive net revenue, it is possible to modify

it to require exact budget balance.) An equivalent clock auction has been con-

sidered by Ensthaler and Giebe (2014) for the case where R (A) is a constant.

It is also possible to accommodate both budget constraints and other fea-

sibility constraints. For example, consider McAfee’s (1992) double-auction

algorithm for a homogeneous-good market with unit buyers and unit sellers,

in which the feasibility constraint dictates that the number of the accepted

buying bids (“demand”) equal the number of the accepted selling bids (“sup-

ply”). McAfee’s algorithm can be viewed as a DA threshold auction that

rejects either the highest-cost selling bid or the lowest-value buying bid in

each round, making sure that demand is always be within 1 of supply, and

that stops as soon as the twin conditions are met: (i) demand equals supply

and (ii) the net threshold payment is nonnegative. (This mechanism is equiv-

alent to a clock auction in which all buyers face the same ascending price and

all sellers face the same descending price.) The FCC’s “incentive auction”is

similarly a double auction for spectrum sellers (TV broadcasters) and spec-

trum buyers (mobile broadband companies) that is constrained to generate

a certain amount of net revenue, but subject to the added complication that

buyers demand and sellers supply different kinds of differentiated goods and

the feasible combinations of accepted bids are quite complicated. However,

FCC’s problem also admits a DA double auction that is similar to McAfee’s

double auction, which sets a sequence of n possible spectrum targets for the
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number of channels to clear, and starts by trying to clear the largest number,

reducing the target whenever the revenue goals cannot be achieved with the

current spectrum clearing target.15

Example 6 (Adaptive Scoring for Yardstick Competition) Suppose that
the auctioneer cares about the expected total profit, that her gross profit for

acquiring each bidder is π, and that there are no other constraints on the feasi-

ble allocations. Further suppose that bidders’values are random, i.i.d. draws

from a distribution that is unknown to the auctioneer. In this symmetric set-

ting we can focus without loss on auctions that treat bidders symmetrically.

The simplest DA algorithms simply set a reserve price p∗ and buy from all

bidders who quote a lower price. This can be implemented as a DA auction

with sAi (bi) = max {vi − p∗, 0}) to yields an expected profit on each bidder
i of (π − p∗) Pr {vi ≤ p∗}, where the probability is calculated based on the
auctioneer’s prior. However, it is evident that the auctioneer can do better

in expectation by conditioning the price quoted to each still-active bidder on

the information implied by the previously rejected bids. Letting p∗A
(
bN\A

)
=

arg maxp (π − p) Pr
{
vi ≤ p|bN\A

}
be the optimal monopsony price for the

posterior distribution of values given the rejected bids, the better DA auc-

tion would set scores according to sAi
(
bi, bN\A

)
= max

{
vi − p∗A

(
bN\A

)
, 0
}
.16

15Duetting, Roughgarden, and Talgam-Cohen (2014) consider the approximation power
of balanced-budget DA double auctions for settings in which buyers and sellers must be
matched one-to-one subject to some constraints.
16Auctions that are even more profitable are possible. The expected profit-maximizing

threshold auction examined in Segal (2003) implements the allocation rule α (b) =
{i ∈ N : bi ≤ p∗ (b−i)}, that is, it offers each bidder the optimal price given the infor-
mation inferred from all the other bids. However, this allocation rule is typically not
implementable with a DA algorithm, because in it the winning bidders could be “bossy”’
—affect the allocation while still winning. In contrast, in a DA algorithm winning bidders
are always non-bossy.
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5.1 Example: Near-Optimality of DA Algorithms

For computationally challenging problems in which full optimization is im-

possible, one may ask where there exists some DA algorithm achieve rea-

sonably good performance. Partly, this question should be addressed by

simulations. In this subsection, we examine a setting in which this ques-

tion can be studied theoretically and which is similar to the FCC repacking

problem.

In this setting, the bidders are television stations who bid to relinquish

their broadcast rights. Broadcast channels must be assigned to the stations

whose bids are rejected in a way that satisfies non-interference constraints.

In this simplified model, those constraints are represented by an interference

graph Z: a set of two-elements subsets of 2N (“edges”). We interpret {i, j} ∈
Z to mean that stations i and j cannot both be assigned to the same channel

without causing unacceptable interference. Letting {1, ..., n} denote the set
of channels left after the auction. Then, the feasible sets of accepted bids for

the FCC’s repacking problem can be written as

F = {A ⊆ N : (∃c : N\A→ {1, ..., n})(∀i, j ∈ N\A)({i, j} ∈ Z ⇒ c(i) 6= c(j)}.
(3)

Proposition 2 Suppose there exists an ordered partition of the set N of

stations into m disjoint sets N1, ..., Nm such that

(i) for each k = 1, ...,m and each i, j ∈ Nk, {i, j} ∈ Z (that is, each Nk

is a “clique”),

(ii) there exists some d < n such that for each k = 1, ...,m and each

S ⊆ Nk satisfying |S| ≤ n− d, we have

|S|+ |∩i∈S ∪l<k {j ∈ Nl : {i, j} ∈ Z}| ≤ n.

Then there exists a DA algorithm that, for any set of bids, first rejects the

most valuable stations in each partition element Nk, iterates in that way
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as long as that is feasible, and then continues in any way. For every such

algorithm, the value of stations assigned is at least a fraction 1− d/n of the
optimal value.

Intuitively, the Proposition (proven in Appendix C) applies to the setting

in which the stations can be partitioned into m “metropolitan areas”in such

a way that (i) no two television stations in the same area can be assigned to

the same channel and (ii) the cross-area constraints are limited in the sense

that if we have a set S of no more than n − d stations in one metropolitan
area, there are no more than n − |S| stations in lower-indexed areas that
have interference constraints with all the stations in S.17 Using an argument

based on Hall’s Marriage Theorem, condition (ii) ensures that it is possible

to select any arbitrary n−d stations in each area independently of each other
and still be able to find a feasible assignment of these stations to channels.

Since the optimal value is bounded above by assigning the n most valuable

stations in each area (which would be feasible if there were no inter-area

constraints), the worst-case fraction of effi ciency loss is bounded above by

(n− d) /n.

We make several observations.

1. It is possible to satisfy condition (ii) while having several times more

inter-area constraints than within-area constraints. To illustrate, sup-

pose that all stations are arranged from north to south on a line and

that each station interferes with its n−1 closest neighbors to the north

as well as its n−1 closest neighbors to the south. Suppose that each suc-

cessive group of n stations is described as a metropolitan area. Then,

it is possible to assign all stations (d = 0) to channels without creating

interference just by rotating through the n channel numbers. In this ex-

ample, there are just x = n(n−1)/2 constraints among stations within

17While we assume that the partition is totally ordered for notational simplicity, the
proposition can also be extended to cases in which partition elements form an ordered
acyclic graph, by interpreting < and ≤ as referring to a precedence relation.
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an area but 2x constraints between those stations and ones in the next

lower indexed area and another 2x constraints involving stations in the

next higher indexed area.

2. In general, there may be many ways to partition stations into cliques,

and many ways to order any given partition. The Proposition formally

applies to each partition, but the number d and therefore the approx-

imation guarantee will vary depending on which partition is selected

and how it is ordered.

3. The worst-case bound applies over all possible station values and in-

corporates both a conservatively high estimate of the optimum and a

conservatively low estimate of the DA algorithm performance. To ap-

proach the worst-case bound, the optimum must be similar to assigning

the n most valuable stations in each area, and the DA algorithm must

be unable to assign any other stations after the n − d most valuable

stations have been assigned in each area.

4. The standard DA algorithm discussed in Example 2 is not among the

ones described in the Proposition, and does not achieve the same per-

formance guarantee. For example, suppose that there is some central

area — area 1 — such that the stations in any area are linked to all

other stations in that area and to the stations in area 1, but not to

any other stations. Suppose that there are 2 channels available. Then

the DA algorithms described in the proposition assign the single most

valuable station in each area, thus achieving at least half of the opti-

mal value. On the other hand, the standard DA algorithm could in

this case achieve as little as 1/(m− 1) of the optimal value: This could

happen if the two most valuable stations happen to be in area 1, in

which the standard DA algorithm assigns just those two stations and

no others. Thus, the example in this section demonstrates how it may

be possible to design a DA algorithm to improve upon the standard
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DA algorithm by taking advantage of known properties of the feasible

set. In applications like the FCC auction, in which interference graph

is known before the auction, it may be possible to apply a variety of

analytical tools and simulations to find a DA algorithm that performs

much better than the standard one.

6 Clock Auctions

Informally, a (“descending”) clock auction is a dynamic mechanism that

presents a declining sequence of prices to each bidder, with each presentation

followed by a decision period in which any bidder whose price has been strictly

reduced decides whether to exit or continue. Bidders that have not exited are

called “active”. Bidders who remain active when their prices are reduced are

said, informally, to “accept” the lower price. When the auction ends, the

active bidders become the winners and are paid their last (lowest) accepted

prices. Different clock auctions are distinguished by their pricing functions,

which determine the sequence of prices presented.18

To formalize the intuitive description, we restrict attention to finite clock

auctions with discrete periods.19 The active bidders in period t are denoted

by At ∈ 2N . A period-t history consists of the sets of active bidders in all

periods up to period t: At = (A1, ..., At) such that At ⊆ ... ⊆ A1 = N . Let

H denote the set of all such histories. A descending clock auction is a price

mapping p : H → RN such that for all t ≥ 2 and all At, p (At) ≤ p (At−1).

(Note that we reuse the p notation here to represent the pricing in the clock

auction: it had earlier referred to pricing in the threshold auction.)

18The described descending clock auctions for the procurement setting are the mirror
image of the ascending clock auctions for the selling setting, which in turn generalize the
classic English auction for selling a single item.
19We say that the clock auction is finite if there exists some T such the auction always

stops by period T . The restriction to finite auctions avoids familiar technical diffi cul-
ties, such as those associated with describing continuous-time auctions and with defining
dominance solvability for games with infinite strategy spaces.

23



The clock auction initializes A1 = N . In each period t ≥ 1, given history

At, a profile of prices p (At) is offered to the bidders. If p (At) = p (At−1),

the auction stops; bidder i is a winner if and only if i ∈ At and in that case
i is paid pi (At). If i ∈ At and pi (At) < pi (A

t−1), then i may choose to

refuse the new price and exit the set of active bidders.20 Letting Et ⊆ At

denote the set of bidders who choose to exit, the auction continues in period

t + 1 with the new set of active bidders At+1 = At\Et and the new history
At+1 = (At, At+1).

To complete the description of the auction as an extensive-form mecha-

nism, we also need to describe bidders’information sets. We allow general

information disclosure: bidder i observes some signal σi (At) in addition to

his current price pi (At) in history At.

A strategy for bidder i in a clock auction is a cutoff strategy with cutoff

bi if it specifies that the bidder should exit if and only if pi (At) < bi, for

some bi ≤ pi (N). Note in particular that every cutoff strategy accepts

the opening price. The next two results show that clock auctions in which

bidders are restricted to cutoffstrategies (for example, in which they must use

proxy bidders with cutoffstrategies) are equivalent to DA threshold auctions,

meaning that the mapping from the profile of bids or cutoffs to allocations

and prices are the same for both auctions.21

Proposition 3 For every DA threshold auction with finite bid spaces, there
exists an equivalent finite clock auction in which bidders are restricted to

cutoff strategies.

20In a variant of the auction, all active bidders i ∈ At may choose whether to exit.
Although the results below are the same for the auction in the main text and this variant,
the version in the main text is preferred because, when there is a feasibility constraint as
in 1, it ensures that the clock auction always yields a feasible outcome.
21If we were to implement a deferred-acceptance threshold auction as a multi-round

procedure in which some information is disclosed to active bidders between rounds and
the active bidders are allowed to improve their bids, then the resulting mechanisms would
be the “survival auctions” proposed by Fujishima et al. (1999). These auctions are
strategically equivalent to clock auctions without the restriction to cutoff strategies.

24



Proof. Given bid spacesB1, .., BN , for each v ∈ R, let v+ = min {bi ∈ Bi : bi > v}

and v− =

{
max {bi ∈ Bi : bi < v} if vi > minBi,

minBi − 1 otherwise.
Let the opening prices

be pi (N) = maxBi for each i. Given a DA threshold auction with scoring

rule s, we construct an equivalent clock auction in which the price to every

highest-scoring active bidder is reduced by the minimal amount, while the

prices for all other bidders are left unchanged:

pi
(
At
)

=

{
pi (A

t−1)
− if i ∈ arg maxj∈At s

At
j

(
pj (At−1) , pN\At (At)

+)
pi (A

t−1) otherwise.

Note in particular that the auction maintains pi (At) = pi (A
t−1) for all i ∈

N\At —thus memorizing the prices rejected by bidders who have exited, so
that their cutoffs can be inferred as pi (At)

+.

Then equivalence is easy to see: First, for every history of the clock

auction, when bidders use cutoff strategies, the next set of bidders to exit in

the clock auction is the set of bidders who have the maximum scores among

the set of active bidders given bidders’cutoffs, and iterating this argument

establishes that the final set of winners is the same in both auctions. Second,

for each bidder who has not exited by the auction’s end and thus became

a winner, his final clock price is the highest cutoff it could have used to be

winning —i.e., his threshold price.

Proposition 4 For every finite clock auction in which bidders are restricted
to cutoff strategies, there exists an equivalent DA threshold auction with finite

bid spaces.

Proof. Given a finite clock auction p, we construct bid spaces and a scoring
rule to create an equivalent DA threshold auction. We take each bidder i’s

bid space to be Bi = {pi (h) : h ∈ H} — the set of possible prices agent i
could face in the clock auction (which is a finite set in a finite clock auction).

Next, we construct the scoring rule in the following manner: Holding fixed

a set of bidders S ⊆ N and their bids bS ⊆ RS, let At(S, bS) denote the set
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of active bidders in the clock auction at round t in which every bidder j ∈ S
uses cutoff strategy bj and every bidder from N\S never exits. Formally,
initialize A1(S, bS) = N and iterate by setting

At+1(S, bS) = At (S, bS) \
{
j ∈ S : bj > pj

(
At (S, bS)

)}
.

This gives an infinite sequence {At (S, bS)}∞t=1, but the sets start repeating
at some point (when the clock auction stops).

Now for given A, bN\A, i ∈ A, and bi, define the score of agent i as the
inverse of how long he would remain active in clock auction if he uses cutoff

bi and all bidders from N\A use cutoffs bN\A, while bidders in A\ {i} never
quit:

sAi
(
bi, bN\A

)
= 1/ sup

{
t ≥ 1 : i ∈ At

(
{i} ∪ (N\A) ,

(
bi, bN\A

))}
.

(Note that the score is 1/∞ = 0 in cases in which the auction stops with

agent i still active.) This score is by construction nondecreasing in bi. Also

by construction, given a set A of active bidders, the set of bidders to be

rejected by the algorithm in the next round (arg maxi∈A s
A
i

(
bi, bN\A

)
) is the

set of bidders who would quit the soonest in the clock auction given that

the exited bidders have used cutoffs bN\A. If no more bidders would exit

the auction, then all active bidders have the score of zero, so the algorithm

stops. Finally, as argued above, the winners’clock auction prices are their

threshold prices: the winner would have lost by using any higher cutoff in Bi

than its clock auction price.

7 Group Strategy-proofness

Definition 4 In a clock auction, agent i with value vi is said to ‘bid truth-
fully” if he accepts clock price if and only if pi (h) > vi. (Equivalently, if the

agent uses a cutoff strategy with cutoff v+i = min {pi (h) : h ∈ H, pi (h) > v}.)
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Definition 5 An auction is “weakly group strategy-proof”if for every profile
of values v and every set of players S ⊆ N and every strategy profile σS of

these players, at least one bidder in S has a weakly higher payoff from the

profile of truthful bids vN than from the strategy profile (v+N\S, σS).

Remark 1 Clock and threshold auctions are not generally “strongly”group
strategy-proof, because a bid increase by a losing bidder that increases a win-

ner’s threshold price is strictly profitable for the winner and weakly profitable

for the loser.

Clock auctions can have various information disclosure policies, leading

to a potentially large set of strategies for bidders, but always including the

cutoff strategies. The definition of group strategy-proofness applies to all

such auctions.

Proposition 5 Every finite clock auction (with any information disclosure)
is weakly group strategy-proof.

Proof. Every truthful bidder has a payoff of at least zero. Consider the first
stage of clock auction affected by a group deviation. A bidder cannot benefit

by a deviation that results in it losing and getting a deviation payoff of zero,

so the first deviation must be made by a bidder who chooses not to exit at a

price equal to or below his truthful value, and who becomes winning. That

bidder’s price, however, must then be below his truthful value, so that bidder

loses from the group deviation.

The preceding argument is independent of the information policy in the

auction, but it applies in particular when bidders are restricted to play cutoff

strategies. Combining the two previous propositions, we get

Corollary 1 Any DA threshold auction is weakly group strategy-proof.22

22One can also establish a version of this result directly without restricting attention to
finite bid spaces.
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8 Pay-as-Bid: Full-info equivalence

Recall that for any bid space B and allocation rule α, the rounded up values

are v+ = min {bi ∈ Bi : bi > v} and the threshold prices for winners are given
by pi (b−i) = max {b′i ∈ Bi : i ∈ α (b′i, b−i)}. In particular, i ∈ α (pi (b−i) , b−i).

Proposition 6 For every paid-as-bid DA auction with bid sets Bi and every

value profile v with vi < maxBi for each i ∈ N , there is a complete-

information Nash equilibrium bid profile b with bi = max
{
v+i , pi

(
v+−i
)}
for

each i ∈ N . The corresponding equilibrium allocation is α (b) = α (v+).

Proof. Let A = α (v+), and note that the definition of threshold prices

implies that

bi = max
{
v+i , pi

(
v+−i
)}

=

{
pi
(
v+−i
)
for i ∈ A,

v+i for i ∈ N\A.

Since changing accepted bids so that they are still accepted does not alter

the outcome of the DA algorithm, we have

α
(
v+
)

= α
(
pA
(
v+
)
, v+N\A

)
= α (b) , and

pi
(
v+−i
)

= pi

(
pA\i

(
v+
)
, v+N\A

)
= pi (b−i) for each i ∈ A.

Now, we verify that the bid profile b is a Nash equilibrium. Every bidder

i ∈ A is winning by bidding bi = pi
(
v+−i
)

= pi (b−i) ≥ v+i , and since any bid

above pi (b−i) would make him lose, he has no profitable deviation. Every

bidder i ∈ N\A is losing with his bid of bi = v+i , and since he could only win

by lowering his bid, he has no profitable deviation.

Proposition 6 only describes one Nash equilibrium outcome among many.

In the remainder of this section, we show how the described outcome may be

selected as the unique prediction by eliminating dominated strategies (either

iteratively, or in a single round and then considering Nash equilibria in the
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remaining strategies). However, in order to ensure uniqueness, we need to

eliminate examples like the following one (which could arise as a particular

instance of yardstick competition described in Example 6):

Example 7 Let N = 2, B1 = {1, 3}, B2 = {2, 4}, α(b) = {1} if b2 = 4,

and α(b) = ∅ otherwise. With v1 < 3, bidder 1’s dominant strategy is to bid

3, but bidder 2 has no dominated strategies. There are two Nash equilibrium

profiles in undominated strategies: they are (3, 4) (in which bidder 1 wins)

and (3, 2) (in which there is no winner). Both strategy profiles also survive

iterated deletion of dominated strategies.

Intuitively, what leads to multiplicity of outcomes in the example is that

neither iterated dominance nor undominated Nash equilibrium nails down the

behavior of the losing bidder 2, and this behavior in turn affects the allocation

of bidder 1. In order to rule out such situations, we restrict attention to

assignment rules that are non-bossy:

Definition 6 Allocation rule α is non-bossy if for any i ∈ N , b ∈ B and

b′i ∈ Bi, α (b′i, b−i) ∩ {i} = α (b) ∩ {i} implies α (b′i, b−i) = α (b).

Non-bossiness means that a bidder cannot affect others’allocations with-

out changing his own allocation. In a DA algorithm, a winner who changes

its bid without changing its winning status (that is, an agent i ∈ α (bi, bi) ∩
α (b′i, bi)) can never affect others’winning status, but because bidder’s scores

can depend on losing bids, a change by a loser to a different losing bid

(i /∈ α (bi, bi) ∪ α (b′i, bi)) could affect the set of winners, like it does in the

above example. The non-bossiness condition rules this out. Examples of DA

algorithms that satisfy this condition will be given below.

Definition 7 An auction is dominance-solvable in state v if under full infor-
mation, there exists a unique payoff profile that remains after iterated deletion

of (weakly) dominated strategies, regardless of the order of elimination.
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For “generic”values (vi /∈ Bi for each i), a unique payoff profile implies

a unique outcome (allocation and winning bids).

Intuitively, iterated deletion of weakly dominated strategies closely resem-

bles a deferred-acceptance procedure, because it works by iterated rejections

using a myopic criterion and finally accepting all strategies that are not re-

jected. We find that, for paid-as-bid auctions, iterated elimination of weakly

dominated bids is closely related to the iterated deletions of always-losing

bids that characterize DA auctions, and that this implies a similarly close

connection between dominance-solvable auctions and DA auctions:

Proposition 7 Consider a paid-as-bid auction with a monotonic, non-bossy
allocation rule α and finite bid spaces B. Say that a value profile v is

“generic” if vi ∈ [0, v̄i] \Bi for each i.

(i) The auction is pure-strategy dominance-solvable for all generic value

profiles if and only if α can be implemented with a DA algorithm.

(ii) If α can be implemented with a DA algorithm, then for every generic

value profile, the unique payoff profile surviving iterated deletion of dominated

strategies is also the unique payoff profile associated with any (pure or mixed)

Nash equilibrium in undominated strategies.

(iii) If α can be implemented with a DA algorithm, then one strategy

profile that survives iterated deletion of dominated strategies and is a Nash

equilibrium in undominated strategies is the one described in Proposition 6.

The equivalence of dominance solvability and implementation using a

DA algorithm —equivalently, using the results of Section 6, a clock-auction

algorithm —is constructive and intuitive. Indeed, a clock auction decrements

the price to a bidder when the bidder could no longer win at that price,

given the prices already accepted by the other bidders. Similarly, in a round

of iterated deletion of dominated strategies in a paid-as-bid auction, a bid

may be dominated because it always loses against all remaining possible bid

profiles of the other bidders (when a lower bid, still above the bidder’s value,
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might sometimes be winning). The extra work in the proof arises because,

in a paid-as-bid auction, bids may also be dominated in other ways: A bid

is also dominated when it is below the bidder’s value, or when there exists a

higher bid that wins against exactly the same opposing bid profiles. In a non-

bossy auction, by a result of Marx and Swinkels (1997), dominated bids can

be eliminated in any order without affecting the final outcome of the auction.

The proof of the proposition, given in Appendix D, distinguishes the reasons

for domination to identify steps that correspond to price reductions in a clock

auction.

Now we describe two classes of non-bossy allocation rules. One class

contains effi cient allocation rules (recall from Example 2 that in some cases

such rules can be computed by DA heuristics):

Lemma 1 Consider an effi cient allocation rule α given by (2) and assume
that there are no ties (i.e. arg min is always single-valued). Then the alloca-

tion rule is non-bossy.

Proof. (2) implies that for all i ∈ N , bi, b′i ∈ Bi, b−i ∈ B−i,

i /∈ α (bi, b−i) ∪ α (b′i, b−i) =⇒ α (bi, b−i) = arg min
A∈F :i/∈A

∑
j∈A bj = α (b′i, b−i) ,

i ∈ α (bi, b−i) ∩ α (b′i, b−i) =⇒ α (bi, b−i) = arg min
A∈F :i∈A

∑
j∈A\{i} bj = α (b′i, b−i) .

Another class contains allocation rules computed by DA heuristics with

fixed scoring and perfect feasibility checking:

Lemma 2 Suppose that F ⊆ 2N is a comprehensive family of feasible sets

(see Example 1), and that scoring is given by sAi
(
bi, bN\A

)
=

{
σi (bi) if A\ {i} ∈ F ,

0 otherwise,
where σi : Bi → R++ are strictly increasing functions that have no ties (so
feasibility is always maintained). The allocation rule computed by the result-

ing DA heuristic is non-bossy.
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Proof. As observed above, every DA procedure satisfies non-bossiness for

the accepted bids. To check that condition for the rejected bids, too, we show

that if given bid profile b agent i’s bid bi is rejected in some round t, then

replacing his bid with some b′i > bi does not affect the final outcome of the

algorithm. Note that it suffi ces to check situations in which the replacement

results in b′i rejected prior to round t: Indeed, otherwise b
′
i will be rejected

in round t and the replacement will not affect the behavior of the algorithm.

Suppose first that the replacement results in b′i being rejected in round t− 1,

and thus does not affect the behavior of the algorithm prior to round t− 1.

Letting At−1 be the set of accepted bids in round t−1, and letting agent j be

the agent whose bid is rejected in round t−1, we must have At−1\ {i, j} ∈ F ,
and

max
k∈At−1\{i,j}:At−1\{j,k}∈F

σk (bk) < σi (bi) < σj (bj) .

Using this and the comprehensiveness of F , we obtain

max
k∈At−1\{i,j}:At−1\{i,j,k}∈F

σk (bk) ≤ max
k∈At−1\{i,j}:At−1\{j,k}∈F

σk (bk) < σj (bj) ,

which implies that bid bj must be rejected in round t. Then after round t

the algorithm will be unaffected by the replacement of bi with b′i. Iterating

this argument, we see by induction on τ that any increase in agent i’s bid,

resulting in it being rejected in some round t−τ , will not affect the allocation.

9 Conclusion

The analysis and results reported in this paper were developed in response

to questions arising from an engagement to advise the FCC on the design

of its “incentive auction.”The possibility that some deferred acceptance al-

gorithm could achieve nearly optimal results is of obvious importance for

that application: it inspired simulations to identify the DA algorithms that
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work best for the FCC’s particular interference graph. The ability to im-

plement any deferred acceptance threshold auction with a clock auction has

been important both because such auctions may be easier for bidders than

comparable sealed-bid auctions, and because a clock auction remains weakly

group strategy-proof even if bidders do not trust the auctioneer’s compu-

tations. Strategy-proofness is also important because it reduces the cost of

participation, especially for small local broadcasters whose participation is

needed for a successful incentive auction. Our outcome equivalence results

suggest that strategy-proofness can be introduced without raising acquisition

costs compared to a paid-as-bid rule. Since there can be many Nash equi-

libria, the credibility of the outcome equivalence result is enhanced by the

related outcome uniqueness result. In the incentive auction, revenues for the

forward auction portion must be suffi cient to pay the costs the broadcasters

incur in moving to new broadcast channels, as well as meeting certain other

gross and net revenue goals, so the possibility of including a cost target in the

scoring rule is necessary to make the whole design possible. Including yard-

stick competition allows the FCC to set maximum prices for broadcasters

in regions with little competition based on bids in other, more competitive

regions.

One important limitation of our analysis is its focus on single-minded

bidders. In practice, bidders are often interested in selling or buying various

goods or bundles and have different values for those packages. For example,

in the FCC’s “reverse auction,”in addition to selling their UHF stations to

go off-air, bidders may also be permitted to bid to switch to a less-congested

lower-frequency VHF band. Also, some broadcasters own multiple stations

and may interested in selling different subsets of their stations.

Deferred-acceptance auctions and clock auctions have also been used and

studied for multidimensional bidders. For some special settings, DA auc-

tions have been proposed that are strategy-proof (e.g. Kelso and Crawford

1987, Ausubel 2004, Bikhchandani et al. 2011), but other kinds of proposed
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auctions are not. For example, in the simultaneous multiple-item ascending

auctions studied by Milgrom (2000) and Gul and Stachetti (2000), bidders

who may be willing to purchase more than one item at a time have an incen-

tive to engage in monopsonistic “demand reduction.”Such incentives may be

minimized in “large-market”settings in which competition limits the power

of each bidder to affect prices, ensuring approximate strategy-proofness. An-

other approach is to design exactly strategy-proof clock auctions that do not

guarantee exact effi ciency (see, e.g., Bartal et al. (2003). Further exami-

nation of DA auctions for multidimensional bidders remains an important

direction for future research.

Roth (2002) has observed that “Market design involves a responsibility

for detail, a need to deal with all of a market’s complications, not just its

principal features.”Over the past two decades, variants of the original DA

algorithm have had remarkable success in accommodating the diverse details

and complications of a wide set of matching market design problems. In

this paper, we extend that success to new class of auction design problems,

connect DA auctions to encompass clock auctions, and reaffi rm the deferred-

acceptance idea as the basis for many of the most successful mechanisms of

market design.
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10 Appendix A: Greedy-Acceptance Auctions

In this appendix, we illustrate the greedy-acceptance auctions of Lehmann,

O’Callaghan and Shoham (2002). To be consistent with their setting, we

consider a three-bidder “forward”(selling) auction (although it is also pos-

sible to construct a corresponding reverse auction) in which it is feasible to

satisfy either both bidders 1 and 2 or bidder 3. (Say, bidder 3 desires a bun-

dle of two objects while bidders 1 and 2 each desire a single object from the

bundle.) For a simple example, the bidders’scores could be defined as their

bids. The auction iterates accepting the highest bid that is still feasible to

accept. The winners are paid their threshold prices, i.e., the minimal bids

that would have been accepted.

Consider the case in which both bidders 1 and 2 bid above bidder 3’s bid.

In this case they both win and pay zero, since each of them would have still

won by bidding zero, letting the other bid be accepted in the first round,

which makes bid 3 infeasible to accept. This implies that the auction is not

weakly group strategyproof: when the true values of bidders 1,2 are below

b3 but strictly positive, they would both strictly benefit from both bidding

above b3, so that they both win and pay zero. Also, the auction’s revenue

in this case is zero, while any full-information Nash equilibrium of the cor-

responding paid-as-bid auction could not sell to bidders 1 and 2 at a total

price below bidder 3’s value, since otherwise bidder 3 could have profitably

deviated to win the auction. Finally, this allocation rule cannot be imple-

mented with DA auction (which is equivalent to an ascending-price clock

auction in the forward-auction setting), since the allocation is completely de-

termined by the single highest bid while the first step of the DA algorithm is

determined by the single worst (lowest) bid according to some criterion. Nor

could it be implemented with a descending-clock (“Dutch”) auction, since in

that auction, when bidder 3 buys first, the allocation is determined but the

winner’s threshold payment is not yet determined.23

23A traditional purpose of a clock auction is to economize on information transmission or
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11 Appendix B: Substitutable DA rules

We say that a clock auction implements allocation rule α if {pi (h) : h ∈ H} =

Bi for each i and the auction generates α (b) when bidders use cutoffstrategies

with cutoffs b ∈ B. Recall that allocation rule α is monotonic if i ∈ α (b) and

b′i < bi implies i ∈ α (b′i, b−i). Say that allocation rule α has has substitutes

if i ∈ α (b) and b′j > bj for some j 6= i implies i ∈ α
(
bj, b

′
j

)
. A set S ⊆ 2N of

subsets of N has no disposal if for all A,A′ ∈ S, A ⊆ A′ implies A = A′.

Proposition 8 With finite bid spaces, any monotonic allocation rule with
substitutes whose range has no disposal can be implemented with a clock auc-

tion or a deferred acceptance heuristic.

Proof. Given α, it can be implemented with a clock auction described as
follows: Set p (N) = maxB and then in each period t, set

pi
(
At
)

= pi
(
At−1

)−
if i ∈ At\α

(
pAt
(
At−1

)
, pN\At

(
At−1

)+)
pi
(
At
)

= pi
(
At−1

)
otherwise.

(That is, decrement prices to those bidders who wouldn’t win given the cur-

rent best offers —the current prices for the active bidders, and the last prices

accepted by the bidders who have exited.)

To see that this auction implements α, observe that if bidders use cut-

off strategies with cutoffs bi ∈ Bi, then a bidder i ∈ α (b) can never exit

the auction: when i ∈ At and he is offered price pi (At) = bi, we will

have pAt\{i} (At−1) ≥ bAt\{i} and pN\At (At−1)
+

= bN\At , hence the substi-

tute property and i ∈ α (b) imply i ∈ α
(
pAt (At−1) , pN\At (At−1)

+
)
and

so his price is not decremented. Thus, we have α (b) ⊆ At throughout

conceal some information, and accordingly we require that that clock-auction prices stop
changing once the allocation has been determined. Without this condition, any allocation
rule can be implemented with a clock auction, simply by running all the prices down to
elicit complete information about cutoffs from all bidders and determining the allocation
as a function of those.
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the auction. On the other hand, when the auction stops we have At ⊆
α
(
pAt (At−1) , pN\At (At−1)

+
)
, and putting together with the previous in-

clusion and using the no-disposal of the range of α implies α (b) = At =

α
(
pAt (At−1) , pN\At (At−1)

+
)
, hence the auction implements α.

Not all DA heuristics generate allocation rules that have substitutes. For

example, the DA heuristic with the scoring rule s{1,2}1 (b1) = max {b1 − 1, 0},
s
{2}
2 (b2, b1) = 1, and s{1,2}2 (b2) = s

{1}
1 (b2, b1) = 0 generates the allocation rue

α (b1, b2) =

{
{1, 2} if b1 < 1,

∅ otherwise,
which does not have subsitutes.

The following example shows that the no-disposal assumption is indis-

pensable. Consider the allocation rule α (b) = arg mini∈N bi, and suppose

B1 = ... = BN (so that ties exist, and in case of ties all of them are winners).

Then there is no clock auction to implement α. For any such auction would

start with equal prices, and it would then not be “safe”to reduce any price:

if all bidders have set their cutoff to the reserve, then the reduction would

eliminate any affected bidder. On the other hand, if some one bidder has

bid least, then failing to reduce the price prevents the algorithm from ever

identifying that bidder.

The no-disposal assumption is satisfied, e.g., in Example 1, if the feasible

set F is comprehensive (meaning that A ∈ F implies A′ ∈ F whenever

A ⊆ A′) and heuristic has perfect feasibility checking. But not all heuristic

rules satisfy it (e.g., in Example 5, the heuristic may accept a set A′ ⊆ N

when bids are low and a set A ⊆ A′ when bids are high).

To see assumption of substitutes is not disposable, consider the effi cient

allocation rule in the example of Section 2, which is monotonic and whose

range has no disposal, but which cannot be implemented by a clock auction.
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12 Appendix C: Proof of Proposition 2

Let

FZn = {S ⊆ N : (∃c : S → {1, ..., n})(∀s, s′ ∈ S)({s, s′} ∈ Z =⇒ c(s) 6= c(s′)},
F d
mn = {S ⊆ N : (∀j) |S ∩Nj| ≤ n− d}, and F d

Zmn = FZn ∩ F d
mn.

For each S ⊆ N , define Sj = S ∩ (∪j′≤jNj′), S ′j = S ∩ Nj, and Z∗(S ′j) =

∩s∈S′j{s
′ ∈ Sj−1 : {s, s′} ∈ Z} —i.e., the set of stations in Sj−1 that interfere

with all of the stations in S ′j. If Z
∗(S ′j) ⊆ Nj−1, then to avoid interference it

is necessary to assign a different channel to each station in S ′j ∪ Z∗(S ′j). A
necessary condition for this is

∣∣S ′j ∪ Z∗(S ′j)∣∣ =
∣∣S ′j∣∣ + |Z∗(S ′j)| ≤ n, which is

assumption (ii) of the proposition. Less obviously, Hall’s Marriage theorem24

implies that this condition is also suffi cient, allowing us to prove the following

lemma.

Lemma 3 F d
Zmn = F d

mn.

Proof. It is obvious that F d
Zmn ⊆ F d

mn (the first set imposes all the same

within-area constraints plus additional ones). For the reverse inclusion, con-

sider any S ∈ F d
mn. We will establish that S ∈ F d

Zmn by showing the possibility

of constructing the required channel assignment function c : S → {1, ..., n}.
Begin the construction by assigning a different channel c(s) to each sta-

tion s ∈ S1, which is possible because |S1| ≤ n. Then, c is feasible for S1.

Inductively, suppose that the channel assignment c has been constructed to

be feasible for stations Sj−1. We show how to extend c to a feasible channel

assignment for Sj = Sj−1 ∪ S ′j.
24Hall’s Marriage Theorem concerns bipartite graphs linking two sets — “men” and

“women.”Given any set of women S, let A(S) be the set of men who linked (“acceptable”)
to at least one woman in S. Hall’s theorem asserts that there exists a one-to-one match in
which every woman is matched to some acceptable man (some men may be unmatched)
if and only if for every subset S′ of the women, |S′| ≤ |A(S′)|.
In our application, Hall’s theorem is used to show that channels can be assigned to the

stations in each area without violating the channel constraints implied by the assignments
in the lower indexed areas.
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For any S ′′j ⊆ S ′j, define J(S ′′j ) = {1, ..., n} − c(Z∗(S ′′j )) and notice that

|J(S ′′j )| = n − |c(Z∗(S ′′j ))|. According to Hall’s Marriage Theorem (infor-

mally, think of the stations in S ′j as the women and the n channels as the

men), there exists a one-to-one map c : S ′j → {1, ..., n} with the property that
(∀s ∈ S ′j)c(s) ∈ J({s}) if and only if (∀S ′′j ⊆ S ′j), |J(S ′′j )| ≥ |S ′′j |. Substitut-
ing for |J(S ′′j )|, this last inequality is equivalent to |c(Z∗(S ′′j ))|+

∣∣S ′′j ∣∣ ≤ n.

For all S ′′j ⊆ S ′j, since S ∈ F d
mn, we have

∣∣S ′′j ∣∣ ≤ n − d. Then, since

S ′′j ∪ Sj−1 ∈ F d
mn, it follows from assumption (ii) of the Proposition that

|S ′′j |+
∣∣Z∗(S ′′j )

∣∣ ≤ n. Combining that inequality with
∣∣c(Z∗(S ′′j ))

∣∣ ≤ |Z∗(S ′′j )|,
we obtain the condition required by Hall’s Marriage theorem, implying the ex-

istence of a one-to-one function c : S ′j → {1, ..., n} such that (∀s ∈ S ′j)c(s) ∈
J({s}). This extends c to a feasible channel assignment for the expanded
domain Sj = S ′j ∪ Sj−1.

Finally, to establish the proposition, consider the following DA algorithm.

At any round t, if the set of stations already assigned is T , then any station

that is essential gets a score of zero. Among inessential stations at round t,

the score for any station s with m(s) = j is n − |T ∩ Nj| + b(s)/(1 + b(s)).

(Intuitively, this algorithm tries to keep the number of stations assigned in

each area roughly equal at every round.) By the above Lemma, this algorithm

will first assign the most valuable station in each area, then the second most

valuable station in each area, and so on until at least the n−d most valuable
stations in each area are assigned.

13 Appendix D: Proof of Proposition 7

For the “if”direction of (i), recall from Proposition 3 that any assignment rule

α that is implementable via a DA threshold auction is also implementable

with a clock auction in which bidders use cutoff strategies with cutoffs cor-

responding to their sealed bids. Furthermore, we can compute the outcome

of the paid-as-bid auction with assignment rule α using a “two-phase clock
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auction” mechanism, as follows. In phase 1, the clock auction algorithm

described above is run to determine the set of winners. In phase 2, the pay-

ments to the winners are determined by allowing prices to continue falling

(through points in Bi) until all bidders “quit,”and then paying each winning

bidder the last price it has accepted. In this two-phase clock auction game,

if bidders use the cutoff profile b, that obviously leads to the same outcome

as the paid-as-bid DA auction game with bid profile b.

If the assignment rule is non-bossy, then for generic values vi ∈ R\Bi the

game satisfies the TDI condition of Marx and Swinkels (1997), and so the

payoff profiles surviving iterated deletion do not depend on the order of dele-

tion. Hence, iterated deletion of dominated strategies in any order leads to

the same set of possible outcomes. It will be convenient for us to also some-

times delete strategies that are equivalent to a surviving strategy, i.e., those

that yield exactly the same auction outcomes (allocation and payments) as

the surviving strategy for any remaining profile of others’strategies.25 Obvi-

ously, deleting equivalent strategies does not affect the outcomes of iterated

deletion, and so below we will use the term “b′i ∗dominates bi” to include
both the case in which b′i ∗dominates bi and the case in which the two bids
are equivalent.

We specify the following deletion process: Begin by deleting for each agent

i all the bids/cutoffs bi < v+i (which are ∗dominated by the bid v+i ). In the
game that remains after these initial deletions, every bidder strictly prefers

any outcome in which it wins to any in which it loses. We specify the next

deletions iteratively by referring to the sequence of prices {p(At)} that would
emerge during phase 1 if each bidder were to use the cutoffstrategy v+i . At the

beginning of each step t = 1, 2, ... of our iterated deletion process, the set of

strategies remaining to each bidder i is B̂t−1
i = Bi∩ [v+i ,max

{
v+i , pi (A

t−1)
}

].

With just these strategies remaining, when the clock auction offers new prices

25Note that in a non-bossy paid-as-bid auction, two bids of bidder i are equivalent to
each other against others’bids from B̂−i if and only if they both make bidder i a sure
loser, i.e., i /∈ α (bi, b−i) ∪ α (b′i, b−i) for all b−i ∈ B̂−i.
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p (At) in iteration t, for each bidder i, all the cutoffs bi ∈ B̂t−1
i such that

bi > max
{
v+i , pi (A

t)
}
are sure to lose and are therefore ∗dominated in the

remaining subgame by bidding v+i . Deletion of these ∗dominated strategies
yields new strategy sets B̂t

i = Bi ∩ [v+i ,max
{
v+i , pi (A

t)
}

] for each i. These

iterated deletions continue until phase 1 ends at some iteration T , at which

the set of winners α(B̂T ) is uniquely determined. For each agent i, if B̂T
i

is not a singleton, then its largest element, max B̂T
i = max

{
v+i , pi

(
AT
)}
,

is ∗dominant in the remaining game with strategy sets B̂T (because it wins

at the highest remaining price). So, we may perform one more round of

deletions, taking B̂T+1
i = {max(v+i , pi

(
AT
)
)}. Hence, the only possible out-

come of iterative elimination of ∗dominated bids in any order is the outcome
corresponding to the bid profile (max(v+i , pi

(
AT
)
))i∈N .

For (ii), fix an undominated mixed Nash equilibrium profile. For each
bidder i with a zero equilibrium payoff, all bids of v+i or more must be always

losing. Hence, by non-bossiness, we may replace all bids of such bidder by

the pure strategy bid v+i to obtain another mixed strategy profile σ with the

same distribution of outcomes.

For any bidder i with strictly positive equilibrium expected payoffs, all

bids in the support of σi have positive expected payoffs, so all must win

with a positive probability against σ−i. Consider the maximum bid profile

in the support of σ. Referring to the clock auction process, we infer that if

any positive-payoff bidder’s bid is losing for that profile, then it is losing for

all profiles in the support of σ, which contradicts positive expected payoffs.

Since reducing a winning cutoff/bid in the clock auction does not affect the

allocation, for every bid profile in the support of σ, the positive-payoffplayers

are the winners. Since the highest always-winning bid earns strictly more

than any lower winning bid, this further implies that the winners’equilibrium

mixtures are degenerate: winning bidders play pure strategies. Therefore, σ

assigns probability one to some single bid profile b.

Next, we claim that the iterative deletions described in the proof of (i)
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above do not delete any of the component bids in b. Phase I of the iterative

deletion procedure deletes only bids above v+i for zero-payoff bidders and

only always-losing bids for positive-payoff bidders, so all the component bids

in b survive that phase. Phase II deletes all but the highest remaining bid

of each winning bidder: the lower bids are never best replies to the highest

surviving bids (they always win, but they are paid less). Hence, the full

procedure never deletes any component bid in the profile b. It follows that

b = (max
{
v+i , pi

(
AT
)}

)i∈N and that the outcome of b is the outcome of

every undominated Nash equilibrium.

To prove (iii): in the surviving bid profile b, each agent i ∈ AT bids its
threshold price, which is pi

(
AT
)
≥ v+i , while each i ∈ N\AT bids v+i , which

is by definition above its threshold price. Thus by Proposition 6 it is a Nash

equilibrium and it contains only undominated strategies, and as argued above

it survives iterated deletion of dominated strategies.

It remains to prove the “only if” direction of (i): we assume that the

paid-as-bid auction for allocation rule α is dominance solvable and construct

a clock-auction price mapping p : H → RN that implements α. We construct
p by iterating over possible clock auction histories and, in each iteration, re-

ducing the price to a single bidder by a minimal decrement. For each possible

clock auction history At of the auction and each bidder i, let B̂i (A
t) ⊆ Bi

denote the set of bidder i’s bids (cutoffs) that are consistent with history At,

i.e.,

B̂i

(
At
)

=

{
{bi ∈ Bi : bi ≤ pi (A

t−1)} for i ∈ At,
{(pi (At−1))+} for i ∈ N\At.

We will show by induction that, for each possible history At, the strategy sets

B̂i (A
t) have two important properties: (a) ∪b∈B̂(At)α (b) ⊆ At (only bidders

who are still active could become winners), and (b) the sets B̂ (At) can be

obtained by an iterative process that, at each, deletes some bids that are

then always-losing bids for bidders in At or above some cutoffs for bidders in

N\At.
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We initialize the clock prices at the null history N as p (N) = maxB, so

that B̂i (N) = Bi for each i and properties (a) and (b) are trivially satisfied.

For each clock round t = 1, 2, ..., given any history At at which properties

(a) and (b) are satisfied, we show that either we can stop the auction at this

point with the set of winners At, or we can reduce the price to a single bidder

in such a way that properties (a) and (b) are inherited by any history At+1

that could succeed At. We do so using the following claim:

Claim 1 For all possible histories At ∈ H, either (i) α (b) = At for all b ∈
B̂ (At) (all active bidders must win), or (ii) there exists i ∈ At\ ∪b−i∈B̂−i(At)
α (pi (A

t−1) , b−i) (there is an active bidder whose highest remaining bid pi (At−1)

must lose).

Proof. We begin by noting that if, given some history At, the set of winners
is uniquely determined to be some Â ⊆ N (i.e., Â = α(b) for all b ∈ B̂ (At)),

then by inductive property (a), either Â = At and so we are in case (i) of the

claim, or we are in case (ii) of the claim for some bidder i ∈ At\Â. Thus,
it remains only to prove the claim for the case in which α(B̂ (At)) is not a

singleton.

Call two bids bi, b′i ∈ B̂i (A
t) of bidder i allocation-equivalent (at At) if

α (b′i, b−i) = α (bi, b−i) for all b−i ∈ B̂−i (At). For each bidder i, we construct
a strategy set B̄i ⊆ B̂i (A

t) by eliminating from B̂i (A
t) all of i’s allocation-

equivalent bids except for the highest one from each equivalence class. Note

that by construction max B̄i = max B̂i (A
t) = pi (A

t−1) for i ∈ At, and

B̄i = B̂i (A
t) =

{
(pi (A

t−1))
+
}
for i ∈ N\At. Note also that the elimination

of allocation-equivalent bids preserves the possible sets of winners: α
(
B̄
)

=

α(B̂ (At)), and that, by assumption, this is not a singleton.

Now consider a value profile v such that v+i =

{
minBi for i ∈ At,
(pi (A

t−1))
+ for i ∈ N\At

(thus, bidders in At always prefer to win, and the other bidders preferred to

exit at the last prices they were offered). Observe that for this value profile,

inductive property (b) allows us to obtain strategy sets B̂ (At) by iterated
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deletion of strategies that are ∗dominated by bidding v+i , by deleting all bids
below (pi (A

t−1))
+ for all bidders i ∈ N\At, and iteratively deleting always-

losing bids. Next, note that when a bid bi is allocation-equivalent to a bid

b′i > bi, then bi is ∗dominated by b′i. Iterated deletion of such ∗dominated
strategies from B̂ (At) yields B̄.

Dominance solvability for value profile v implies that if the set α
(
B̄
)
of

winners is not uniquely determined, then for some bidder i ∈ At some bid

bi ∈ B̄i must be ∗dominated by some bid b′i ∈ B̄i\ {bi} against B̄−i. If we had
b′i > bi, then (by monotonicity) the two bids would have to win against the

same set of opposing bid profiles b−i ∈ B̄−i and hence (by non-bossiness) they
would be allocation-equivalent, which is impossible given our construction of

B̄.26 Hence, we must have b′i < bi. Furthermore, since B̄ was obtained from

B̂ (At) by deleting allocation-equivalent bids, bid b′i must also ∗dominate bid
bi against B̂−i (At) . Since v+i = minBi ≤ b′i < bi, such ∗dominance is only
possible if bi never wins against B̂−i (At), which, by monotonicity, implies

that the bid pi (At−1) = max B̄i ≥ bi also never wins against B̂−i (At). This

establishes the claim.

Now, if we are in case (i) of the claim, then the auction can be finished

in round t: if all the bidders have used cutoff strategies with a cutoff profile

b ∈ B̂ (At), then the auction has found the desired allocation α (b) = At.

If we are instead in case (ii) of the claim, then in iteration t of the

clock auction, our construction decrements the price to the bidder i iden-

tifed in the claim and leave the other prices unchanged, that is, we set

pj (At) =

{
(pi (A

t−1))
− for i = j,

pj (At−1) for j 6= i.
. It remains to show that the two in-

ductive properties are inherited in iteration t+ 1 by both the history At+1 =

(At, At) in which bidder i accepts the reduced price and the history At+1 =

26This argument relies on the observation that deleting allocation-equivalent bids for
one player does not affect the allocation-equivalence of other players’bids: hence, when
two bids of bidder i are allocation-equivalent against B̄−i, they must also be allocation-
equivalent against B̂−i (At).
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(At, At\ {i}) in which bidder i quits. For property (a), using the fact that
B̂(At+1) ⊆ B̂ (At) and the inductive hypothesis, we see that ∪b∈B̂(At+1)α (b) ⊆
∪b∈B̂(At)α (b) ⊆ At, which establishes the property for historyAt+1 = (At, At);

as for history At+1 = (At, At\ {i}), we use in addition the fact that i /∈
∪b∈B̂(At+1)α (b) since we are in case (ii) of the claim. For property (b), it

extends to history (At, At) since B̂i (A
t, At) = B̂i (A

t) \ {pi (At−1)} and we
are in case (ii) of the claim, and it extends to history (At, At\ {i}) since
B̂i (A

t, At\ {i}) =
{
bi ∈ B̂i (A

t) : bi ≥ pi (A
t−1)

}
.
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