
III. Dynamic Programming: Method and Applications

Now we work with models where agents live forever (infinite planning horizon).

An example: infinitely-lived representative household

max
∞∑

t=0

βtu(ct)

s.t. ct + kt+1 = yt = kα
t ∀t, k0 given

Dynamic Programming (DP) is useful to solve this sort of “recursive problem”.

Define a periodic return function: rt(xt, ut).

• rt(−) is concave

• xt: vector of state variables

– state variables characterize the economic system’s current position

– state variables are out of the control of an agent (cannot change in period t)

– state variables can be exogenous variables or endogenous variables

– state variables usually include information variables that help predict the

future

• ut: vector of control variables (choice variables)

– control variables are under control of an agent (can change in period t)

Define a transition function: gt(xt, ut).

• a transition function maps the state of the model today into the state tomorrow

• assume {(xt+1, xt) : xt+1 ≤ gt(xt, ut), ut ∈ Rk} is convex and compact

1

General recursive problem is:

max
{ut}∞t=0

∞∑

t=0

rt(xt, ut)

s.t. x0 given

x1 = g0(x0, u0)

x2 = g1(x1, u1)

...

Recursive: past xt’s and past ut’s have no direct effect on current and future returns

(the only effect of past xt’s and past ut’s is through xt).

Two further specializations:

• transition function is time invariant:

gt(xt, ut) = g(xt, ut)

for example,

ct + kt+1 = kα
t ⇒ kt+1 = kα

t − ct = g(kt, ct)

• periodic return function has the form:

rt(xt, ut) = βtr(xt, ut) 0 < β < 1

for example,

U =
∞∑

t=0

βt ln ct

DP amounts to finding a policy function h(xt) mapping xt into ut, such that the sequence

{ut}∞t=0 generated by iterating the two functions

ut = h(xt) (policy function)

xt+1 = g(xt, ut) (transition function)

2

starting from the initial condition x0 solves the problem (problem 1)

max
{ut}∞t=0

∞∑

t=0

βtr(xt, ut)

s.t. x0 given

xt+1 = g(xt, ut) ∀t

A solution in the form of ut = h(xt) and xt+1 = g(xt, ut) is said to be recursive.

Example of a recursive problem:

max
{ct}∞t=0

∞∑

t=0

βt ln ct

s.t. k0 given

kt+1 = kα
t − ct

The Value Function V (x) gives the optimal value of the recursive problem:

V (x0) = max
{ut}∞t=0

∞∑

t=0

βtr(xt, ut)

where the maximization is subject to x0 given and xt+1 = g(xt, ut).

If we knew V (−), then we could calculate the policy function h(−) by solving the

following problem (problem 2) for all possible values of the state variables (i.e. for

each x ∈ X):

max
u

{r(x, u) + βV (x̃)}

s.t. x given, x̃ = g(x, u)

We started with problem 1 which involves solving for an infinite sequence of control

variables {ut}∞t=0. Now our task has become to solve problem 2. Problem 2 involves

solving for the functions V (x) and h(x) that solve a continuum of maximization problems

(one for each value of x ∈ X).

3

Our task has become jointly to solve for V (x), h(x). The (still) unknown value function

V (x) and policy function h(x) are linked by the Bellman Equation (BE)

V (x) = max
u

{r(x, u) + βV (x̃)} (BE 1)

s.t. x given, x̃ = g(x, u)

or

V (x) = max
u

{r(x, u) + βV [g(x, u)]} (BE 2)

s.t. x given

The maximizer of the RHS of (BE 2) is a policy function u = h(x) that satisfies

V (x) = r[x, h(x)] + βV {g[x, h(x)]}.

Solving the Bellman Equation:

Under the assumptions we make on the return function r(−) and the set {(xt+1, xt) :

xt+1 ≤ gt(xt, ut), ut ∈ Rk}, it turns out that

1. The functional equation (BE 1) has a unique strictly concave solution.

2. This solution is approached in the limit as j →∞ by iterations on

Vj+1 = max
u

{r(x, u) + βVj(x̃)}

s.t. x given, x̃ = g(x, u)

starting from any bounded continuous initial V0.

3. There is a unique and time invariant optimal policy of the form ut = h(xt), where

h(−) is chosen to maximize the RHS of BE 1.

4. Off corners, the limiting value function V is differentiable with

V ′(x) =
∂r

∂x
[x, h(x)] + β

∂g

∂x
[x, h(x)]V ′{g[x, h(x)]}.

This is a version of a formula of Benveniste and Scheinkman (1979) for the derivative of

the optimal value function (or envelope condition). (See sections 4.1 and 4.2 of Stokey

and Lucas (with Prescott) (1989) for the proof.)

4

We often encounter settings in which the transition law can be formulated so that the

state x does not appear in it, so that ∂g
∂x

= 0, which makes the above equation become

V ′(x) =
∂r

∂x
[x, h(x)].

For example, consider the following problem:

max
∑

t

ln(Ct)

s.t. At+1 = R(At − Ct)

In this original problem, At is state variable, Ct and At+1 are control variables, and

At+1 = R(At − Ct) = g(At, Ct) is the transition law.

If we define a new control variable St = At − Ct, then the transition law becomes

At+1 = RSt = g(St) and ∂gt

∂At
= 0.

Four ways to solve a DP problem:

1. Value function iteration.

2. Guess and verify a solution for the policy function.

3. Guess and verify a solution for the value function.

4. Policy function iteration (Howard’s improvement algorithm).

An Example: optimal growth model (Cass-Koopmans)

Planner chooses the sequence {ct, kt+1}∞t=0 to maximize

∞∑

t=0

βt ln ct

s.t. k0 given, ct + kt+1 = Akα
t

• Method 1: value function iteration

Bellman Equation (BE):

V (k) = max
c,k̃

{ln c + β V (k̃)}

s.t. k given, k̃ = Akα − c

5

◦ Start with V0 = 0.

◦ First iteration: solve

V1(k) = max
c,k̃

{ln c + β V0(k̃)}

s.t. c + k̃ = Akα

Trivial solution is c = Akα and k̃ = 0.

Accordingly: V1(k) = ln Akα = ln A + α ln k.

◦ Second iteration: solve

V2(k) = max
c,k̃

{ln c + βV1(k̃)}

= max
k̃

{ln(Akα − k̃) + β[ln A + α ln k̃]}

FOC for the problem on the right-hand-side (RHS) of BE:

−1

Akα − k̃
+

βα

k̃
= 0 ⇒ k̃ =

αβ

1 + αβ
Akα

⇒ c = Akα − k̃ =
1

1 + αβ
Akα

Using the solutions for c and k̃ in the BE, we find

V2(k) = ln

(
A

1 + αβ

)
+ β ln A + αβ ln

(
αβA

1 + αβ

)
+ α(1 + αβ) ln k

= constant + α(1 + αβ) ln k

◦ Third iteration: solve

V3(k) = max
k̃

{ln(Akα − k̃) + β[cst + α(1 + αβ) ln k̃]}

⇒ k̃ =
αβ + (αβ)2

1 + αβ + (αβ)2
Akα, c =

1

1 + αβ + (αβ)2
Akα

(1) c = Akα k̃ = 0

(2) c = 1
1+αβ

Akα k̃ = αβ
1+αβ

Akα

(3) c = 1
1+αβ+(αβ)2

Akα k̃ = αβ+(αβ)2

1+αβ+(αβ)2
Akα

(∞) c = 1
(1
1−αβ

)
Akα = (1− αβ)Akα k̃ = αβ Akα

6

Value function:

V (k) =
1

1− β

{
ln[A(1− αβ)] +

αβ

1− αβ
ln(Aαβ)

}
+

α

1− αβ
ln k.

• Method 2: guess and verify a solution for the policy function

◦ Bellman Equation:

V (k) = max
k̃

{
ln(Akα − k̃) + βV (k̃)

}

◦ Guess k̃ = γAkα where γ is an undetermined coefficient.

◦ FONC:
1

Akα − k̃
= βV ′(k̃)

◦ Find V ′(k̃) using Benveniste and Scheinkman/Envelope Condition:

V ′(k) =
αAkα−1

Akα − k̃
=

αAkα−1

Akα − γAkα
=

αAkα−1

(1− γ)Akα

V ′(k) =
α

(1− γ)k
⇒ V ′(k̃) =

α

(1− γ)k̃

◦ FONC and Envelope Condition yield the Euler Equation:

1

Akα − k̃
= β

α

(1− γ)k̃

Using the guess again

1

Akα − γAkα
= β

α

(1− γ)γAkα

1

(1− γ)Akα
=

αβ

(1− γ)γAkα
⇒ γ = αβ

◦ Policy functions:

k̃ = αβAkα, c = (1− αβ)Akα.

7

• Method 3: guess and verify a solution for the value function

V (k) = max
k̃

{ln(Akα − k̃) + βV (k̃)}

◦ Guess V (k) = E + F ln k where E and F are undetermined coefficients.

◦ First Step: Use the guess in BE and solve for a “preliminary” policy function.

Bellman Equation is

E + F ln k = max
k̃

{ln(Akα − k̃) + βE + βF ln(k̃)}

Maximization problem on the RHS yields the preliminary policy function:

k̃ =
βF

1 + βF
Akα

◦ Second Step: Use solution for k̃ in BE and solve for the undetermined coefficients

E + F ln k = ln

[(
1− βF

1 + βF

)
Akα

]
+ βE + βF ln

(
βF

1 + βF
Akα

)

E + F ln k = ln

(
A

1 + βF

)
+ α ln k + βE + βF ln

(
βFA

1 + βF

)
+ αβF ln k

Grouping terms:

E + F ln k =

[
ln

(
A

1 + βF

)
+ βE + βF ln

(
βFA

1 + βF

)]
+ [α + αβF] ln k

For this equation to hold for any ln k, it must be that

E ≡ ln

(
A

1 + βF

)
+ βE + βF ln

(
βFA

1 + βF

)
(1)

F ≡ α + αβF (2)

Restriction (2) implies

F =
α

1− αβ
(3)

Using result (3) in restriction (1) implies

E =
1

1− β

[
ln (A(1− αβ)) +

αβ

1− αβ
ln(αβA)

]

Result (3) implies the policy functions:

k̃ =
βF

1 + βF
Akα ⇒ k̃ = αβAkα, c = (1− αβ)Akα.

8

