

Agricultural Journals

AGRICULTURAL ECONOMICS

Zemědělská ekonomika

home page about us contact

us

Table of Contents

IN PRESS

AGRICECON

2014

AGRICECON

2013

AGRICECON

2012

AGRICECON

2011

AGRICECON

2010

AGRICECON

2009

AGRICECON

2008

AGRICECON

2007

AGRICECON

2000
AGRICECON
2005
AGRICECON
2004
AGRICECON
2003
AGRICECON
2002
AGRICECON

Editorial Board

Home

For Authors

- AuthorsDeclaration
- Instruction to Authors
- Guide for Authors
- CopyrightStatement
- Submission

For Reviewers

Reviewers

Reviewers
Login

Subscription

Agric. Econ. — Czech

D. Klimešová, E. Ocelíková

Spatial data modelling and maximum entropy theory

Agric. Econ. - Czech, 51 (2005): 80-83

Spatial data modelling and consequential error estimation of the distribution function are key points of spatial analysis. For many practical problems, it is impossible to hypothesize distribution function firstly and some distribution models, such as Gaussian distribution, may not suit to complicated distribution in

of the approach based on the maximum entropy theory that can optimally describe the spatial data distribution and gives the actual error estimation.

Keywords:

spatial data classification, distribution function, error distribution, and maximum entropy approach

[fulltext]

© 2011 Czech Academy of Agricultural Sciences

