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1. Life

Poincaré was born on April 29,1854 in Nancy and died on July 17, 1912 in Paris. 
Poincaré's family was influential. His cousin Raymond was the President and the 
Prime Minister of France, and his father Leon was a professor of medicine at 
the University of Nancy. His sister Aline married the spiritualist philosopher 
Emile Boutroux. 

Poincaré studied mining engineering, mathematics and physics in Paris. 
Beginning in 1881, he taught at the University of Paris. There he held the 
chairs of Physical and Experimental Mechanics, Mathematical Physics and Theory 
of Probability, and Celestial Mechanics and Astronomy. 

At the beginning of his scientific career, in his doctoral dissertation of1879, 
Poincaré devised a new way of studying the properties of functions defined by 
differential equations. He not only faced the question of determining the 
integral of such equations, but also was the first person to study the general 



geometric properties of these functions. He clearly saw that this method was 
useful in the solution of problems such as the stability of the solar system, 
in which the question is about the qualitative properties of planetary orbits 
(for example, are orbits regular or chaotic?) and not about the numerical 
solution of gravitational equations. During his studies on differential 
equations, Poincaré made use of Lobachevsky's non-Euclidean geometry. Later, 
Poincaré applied to celestial mechanics the methods he had introduced in his 
doctoral dissertation. His research on the stability of the solar system opened 
the door to the study of chaotic deterministic systems; and the methods he used 
gave rise to algebraic topology. 

Poincaré sketched a preliminary version of the special theory of relativity and 
stated that the velocity of light is a limit velocity and that mass depends on 
speed. He formulated the principle of relativity, according to which no 
mechanical or electromagnetic experiment can discriminate between a state of 
uniform motion and a state of rest, and he derived the Lorentz transformation. 
His fundamental theorem that every isolated mechanical system returns after a 
finite time [the Poincaré Recurrence Time] to its initial state is the source 
of many philosophical and scientific analyses on entropy. Finally, he clearly 
understood how radical is quantum theory's departure from classical physics. 

Poincaré was deeply interested in the philosophy of science and the foundations 
of mathematics. He argued for conventionalism and against both formalism and 
logicism. Cantor's set theory was also an object of his criticism. He wrote 
several articles on the philosophical interpretation of mathematical logic. 
During his life, he published three books on the philosophy of science and 
mathematics. A fourth book was published posthumously in 1913. 
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2. Chaos and the Solar System

In his research on the three-body problem, Poincaré became the first person to 
discover a chaotic deterministic system. Given the law of gravity and the 
initial positions and velocities of the only three bodies in all of space, the 
subsequent positions and velocities are fixed--so the three-body system is 
deterministic. However, Poincaré found that the evolution of such a system is 
often chaotic in the sense that a small perturbation in the initial state such 
as a slight change in one body's initial position might lead to a radically 
different later state than would be produced by the unperturbed system. If the 
slight change isn't detectable by our measuring instruments, then we won't be 
able to predict which final state will occur. So, Poincaré's research proved 
that the problem of determinism and the problem of predictability are distinct 
problems. 

From a philosophical point of view, Poincaré's results did not receive the 
attention that they deserved. Also the scientific line of research that 
Poincaré opened was neglected until meteorologist Edward Lorenz, in 1963, 
rediscovered a chaotic deterministic system while he was studying the evolution 
of a simple model of the atmosphere. Earlier, Poincaré had suggested that the 
difficulties of reliable weather predicting are due to the intrinsic chaotic 
behavior of the atmosphere. Another interesting aspect of Poincaré's study is 
the real nature of the distribution in phase space of stable and unstable 
points, which are so mixed that he did not try to make a picture of their 
arrangement. Now we know that the shape of such distribution is fractal-like. 
However, the scientific study of fractals did not begin until Benoit 
Mandelbrot's work in 1975, a century after Poincaré's first insight. 



Why was Poincaré's research neglected and underestimated? The problem is 
interesting because Poincaré was awarded an important scientific prize for his 
research; and his research in celestial mechanics was recognized to be of 
fundamental importance. Probably there were two causes. Scientists and 
philosophers were primarily interested in the revolutionary new physics of 
relativity and quantum mechanics, but Poincaré worked with classical mechanics. 
Also, the behavior of a chaotic deterministic system can be described only by 
means of a numerical solution whose complexity is staggering. Without the help 
of a computer the task is almost hopeless. 
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3. Arithmetic, Intuition and Logic

Logicists such as Bertrand Russell and Gottlob Frege believed that mathematics 
is basically a branch of symbolic logic, because they supposed that 
mathematical terminology can be defined using only the terminology of logic and 
because, after this translation of terms, any mathematical theorem can be shown 
to be a restatement of a theorem of logic. Poincaré objected to this logicist 
program. He was an intuitionist who stressed the essential role of human 
intuition in the foundations of mathematics. According to Poincaré, a 
definition of a mathematical entity is not the exposition of the essential 
properties of the entity, but it is the construction of the entity itself; in 
other words, a legitimate mathematical definition creates and justifies its 
object. For Poincaré, arithmetic is a synthetic science whose objects are not 
independent from human thought. 

Poincaré made this point in his investigation of Peano's axiomatization of 
arithmetic. Italian mathematician Giuseppe Peano (1858-1932) axiomatized the 
mathematical theory of natural numbers. This is the arithmetic of the 
nonnegative integers. Apart from some purely logical principles, Peano employed 
five mathematical axioms. Informally, these axioms are: 

1. Zero is a natural number. 
2. Zero is not the successor of any natural number. 
3. Every natural number has a successor, which is a natural number. 
4. If the successor of natural number a is equal to the successor of natural 

number b, then a and b are equal. 
5. Suppose: 

(i) zero has a property P; 
(ii) if every natural number less than a has the property P then a also 
has the property P. 
Then every natural number has the property P. (This is the principle of 
complete induction.) 

Bertrand Russell said Peano's axioms constitute an implicit definition of 
natural numbers, but Poincaré said they do only if they can be demonstrated to 
be consistent. They can be shown consistent only by showing there is some 
object satisfying these axioms. From a general point of view, an axiom system 
can be conceived of as an implicit definition only if it is possible to prove 
the existence of at least one object that satisfies all the axioms. Proving 
this is not an easy task, for the number of consequences of Peano axioms is 
infinite and so a direct inspection of each consequence is not possible. Only 
one way seems adequate: we must verify that if the premises of an inference in 
the system are consistent with the axioms of logic, then so is the conclusion. 
Therefore, if after n inferences no contradiction is produced, then after n+1 
inferences no contradiction will be either. Poincaré argues that this reasoning 



is a vicious circle, for it relies upon the principle of complete induction, 
whose consistency we have to prove. (In 1936, Gerhard Gentzen proved the 
consistency of Peano axioms, but his proof required the use of a limited form 
of transfinite induction whose own consistency is in doubt.) As a consequence, 
Poincaré asserts that if we can't noncircularly establish the consistency of 
Peano's axioms, then the principle of complete induction is surely not provable 
by means of general logical laws; thus it is not analytic, but it is a 
synthetic judgment, and logicism is refuted. It is evident that Poincaré 
supports Kant's epistemological viewpoint on arithmetic. For Poincaré, the 
principle of complete induction, which is not provable via analytical 
inferences, is a genuine synthetic a priori judgment. Hence arithmetic cannot 
be reduced to logic; the latter is analytic, while arithmetic is synthetic. 

The synthetic character of arithmetic is also evident if we consider the nature 
of mathematical reasoning. Poincaré suggests a distinction between two 
different kinds of mathematical inference: verification and proof. Verification 
or proof-check is a sort of mechanical reasoning, while proof-creation is a 
fecund inference. For example, the statement '2+2 = 4' is verifiable because it 
is possible to demonstrate its truth with the help of logical laws and the 
definition of sum; it is an analytical statement that admits a straightforward 
verification. On the contrary, the general statement (the commutative law of 
addition) 

For any x and any y, x + y = y + x 

is not directly verifiable. We can choose an arbitrary pair of natural numbers 
a and b, and we can verify that a+b = b+a; but there is an infinite number of 
admissible choices of pairs, so the verification is always incomplete. In other 
words, the verification of the commutative law is an analytical method by means 
of which we can verify every particular instance of a general theorem, while 
the proof of the theorem itself is synthetic reasoning which really extends our 
knowledge, Poincaré believed. 

Another aspect of mathematical thinking that Poincaré analyzes is the different 
roles played by intuition and logic. Methods of formal logic are elementary and 
certain, and we can surely rely on them. However, logic does not teach us how 
to build a proof. It is intuition that helps mathematicians find the correct 
way of to assemble basic inferences into a useful proof. Poincaré offers the 
following example. An unskilled chess player who watches a game can verify 
whether a move is legal, but he does not understand why players move certain 
pieces, for he does not see the plan which guides players' choices. In a 
similar way, a mathematician who uses only logical methods can verify every 
inference in a given proof, but he cannot find an original proof. In other 
words, every elementary inference in a proof is easily verifiable through 
formal logic, but the invention of a proof requires the understanding -- 
grasped by intuition -- of the general scheme, which directs mathematician's 
efforts towards the final goal. 

Logic is -- according to Poincaré -- the study of properties which are common 
to all classifications. There are two different kinds of classifications: 
predicative classifications, which are not modified by the introduction of new 
elements; and impredicative classifications, which are modified by new 
elements. Definitions as well as classifications are divided into predicative 
and impredicative. A set is defined by a law according to which every element 
is generated. In the case of an infinite set, the process of generating 
elements is unfinished; thus there are always new elements. If their 
introduction changes the classification of already generated objects, then the 
definition is impredicative. For example, look at phrases containing a finite 



number of words and defining a point of space. These phrases are arranged in 
alphabetical order and each of them is associated with a natural number: the 
first is associated with number 1, the second with 2, etc. Hence every point 
defined by such phrases is associated with a natural number. Now suppose that a 
new point is defined by a new phrase. To determine the corresponding number it 
is necessary to insert this phrase in alphabetical order; but such an operation 
modifies the number associated with the already classified points whose 
defining phrase follows, in alphabetical order, the new phrase. Thus this new 
definition is impredicative. 

For Poincaré, impredicative definitions are the source of antinomies in set 
theory, and the prohibition of impredicative definitions will remove such 
antinomies. To this end, Poincaré enunciates the vicious circle principle: a 
thing cannot be defined with respect to a collection that presupposes the thing 
itself. In other words, in a definition of an object, one cannot use a set to 
which the object belongs, because doing so produces an impredicative 
definition. Poincaré attributes the vicious circle principle to French 
mathematician J. Richard. In 1905, Richard discovered a new paradox in set 
theory, and he offered a tentative solution based on the vicious circle 
principle. 

Poincaré's prohibition of impredicative definitions is also connected with his 
point of view on infinity. According to Poincaré, there are two different 
schools of thought about infinite sets; he called these schools Cantorian and 
Pragmatist. Cantorians are realists with respect to mathematical entities; 
these entities have a reality that is independent of human conceptions. The 
mathematician discovers them but does not create them. Pragmatists believe that 
a thing exists only when it is the object of an act of thinking, and infinity 
is nothing but the possibility of the mind's generating an endless series of 
finite objects. Practicing mathematicians tend to be realists, not pragmatists 
or intuitionists. This dispute is not about the role of impredicative 
definitions in producing antinomies, but about the independence of mathematical 
entities from human thinking.
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4. Conventionalism and the Philosophy of
Geometry

The discovery of non-Euclidean geometries upset the commonly accepted Kantian 
viewpoint that the true structure of space can be known apriori. To understand 
Poincaré's point of view on the foundation of geometry, it helps to remember 
that, during his research on functions defined by differential equations, he 
actually used non-Euclidean geometry. He found that several geometric 
properties are easily provable by means of Lobachevsky geometry, while their 
proof is not straightforward in Euclidean geometry. Also, Poincaré knew 
Beltrami's research on Lobachevsky's geometry. Beltrami (Italian mathematician, 
1835-1899) proved the consistency of Lobachevsky geometry with respect to 
Euclidean geometry, by means of a translation of every term of Lobachevsky 
geometry into a term of Euclidean geometry. The translation is carefully chosen 
so that every axiom of non-Euclidean geometry is translated into a theorem of 
Euclidean geometry. Beltrami's translation and Poincaré's study of functions 
led Poincaré to assert that: 

● Non-Euclidean geometries have the same logical and mathematical legitimacy 
as Euclidean geometry. 

● All geometric systems are equivalent and thus no system of axioms may 



claim that it is the true geometry. 
● Axioms of geometry are neither synthetic a priori judgments nor analytic 
ones; they are conventions or 'disguised' definitions. 

According to Poincaré, all geometric systems deal with the same properties of 
space, although each of them employs its own language, whose syntax is defined 
by the set of axioms. In other words, geometries differ in their language, but 
they are concerned with the same reality, for a geometry can be translated into 
another geometry. There is only one criterion according to which we can select 
a geometry, namely a criterion of economy and simplicity. This is the very 
reason why we commonly use Euclidean geometry: it is the simplest. However, 
with respect to a specific problem, non-Euclidean geometry may give us the 
result with less effort. In 1915, Albert Einstein found it more convenient, the 
conventionalist would say, to develop his theory of general relativity using 
non-Euclidean rather than Euclidean geometry. Poincaré's realist opponent would 
disagree and say that Einstein discovered space to be non-Euclidean. 

Poincaré's treatment of geometry is applicable also to the general analysis of 
scientific theories. Every scientific theory has its own language, which is 
chosen by convention. However, in spite of this freedom, the agreement or 
disagreement between predictions and facts is not conventional but is 
substantial and objective. Science has an objective validity. It is not due to 
chance or to freedom of choice that scientific predictions are often accurate. 

These considerations clarify Poincaré's conventionalism. There is an objective 
criterion, independent of the scientist's will, according to which it is 
possible to judge the soundness of the scientific theory, namely the accuracy 
of its predictions. Thus the principles of science are not set by an arbitrary 
convention. In so far as scientific predictions are true, science gives us 
objective, although incomplete, knowledge. The freedom of a scientist takes 
place in the choice of language, axioms, and the facts that deserve attention. 

However, according to Poincaré, every scientific law can be analyzed into two 
parts, namely a principle, that is a conventional truth, and an empirical law. 
The following example is due to Poincaré. The law: 

Celestial bodies obey Newton's law of gravitation 

The law consists of two elements: 

1. Gravitation follows Newton law. 
2. Gravitation is the only force that acts on celestial bodies. 

We can regard the first statement as a principle, as a convention; thus it 
becomes the definition of gravitation. But then the second statement is an 
empirical law. 

Poincaré's attitude towards conventionalism is illustrated by the following 
statement, which concluded his analysis on classical mechanics in Science and 
Hypothesis: 

Are the laws of acceleration and composition of forces nothing but 
arbitrary conventions? Conventions, yes; arbitrary, no; they would 
seem arbitrary if we forgot the experiences which guided the founders 
of science to their adoption and which are, although imperfect, 
sufficient to justify them. Sometimes it is useful to turn our 
attention to the experimental origin of these conventions. 
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5. Science and Hypothesis

According to Poincaré, although scientific theories originate from experience, 
they are neither verifiable nor falsifiable by means of the experience alone. 
For example, look at the problem of finding a mathematical law that describes a 
given series of observations. In this case, representative points are plotted 
in a graph, and then a simple curve is interpolated. The curve chosen will 
depend both on the experience which determines the representative points and on 
the desired smoothness of the curve even though the smoother the curve the more 
that some points will miss the curve. Therefore, the interpolated curve -- and 
thus the tentative law -- is not a direct generalization of the experience, for 
it 'corrects' the experience. The discrepancy between observed and calculated 
values is thus not regarded as a falsification of the law, but as a correction 
that the law imposes on our observations. In this sense, there is always a 
necessary difference between facts and theories, and therefore a scientific 
theory is not directly falsifiable by the experience. 

For Poincaré, the aim of the science is to prediction. To accomplish this task, 
science makes use of generalizations that go beyond the experience. In fact, 
scientific theories are hypotheses. But every hypothesis has to be continually 
tested. And when it fails in an empirical test, it must be given up. According 
to Poincaré, a scientific hypothesis which was proved untenable can still be 
very useful. If a hypothesis does not pass an empirical test, then this fact 
means that we have neglected some important and meaningful element; thus the 
hypothesis gives us the opportunity to discover the existence of an unforeseen 
aspect of reality. As a consequence of this point of view about the nature of 
scientific theories, Poincaré suggests that a scientist must utilize few 
hypotheses, for it is very difficult to find the wrong hypothesis in a theory 
which makes use of many hypotheses. 

For Poincaré, there are many kinds of hypotheses: 

● Hypotheses which have the maximum scope, and which are common to all 
scientific theories (for example, the hypothesis according to which the 
influence of remote bodies is negligible). Such hypotheses are the last to 
be changed. 

● Indifferent hypotheses that, in spite of their auxiliary role in 
scientific theories, have no objective content (for example, the 
hypothesis that unseen atoms exist). 

● Generalizations, which are subjected to empirical control; they are the 
true scientific hypotheses. 

Regarding Poincaré's point of view about scientific theories, the following 
have the most lasting value: 

● Every scientific theory is a hypothesis that had to be tested. 
● Experience suggests scientific theories; but experience does not justify 
them. 

● Experience alone is unable to falsify a theory, for the theory often 
corrects the experience. 

● A central aim of science is prediction. 
● The role of a falsified hypothesis is very important, for it throws light 
on unforeseen conditions. 



● Experience is judged according to a theory. 
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