

How to Predict Future Duration from Present Age

Kierland, Brian and Monton, Bradley (2005) How to Predict Future Duration from Present Age.

Full text available as: <u>Microsoft Word</u> - Requires a viewer, such as <u>Microsoft Word Viewer</u>

Abstract

Physicist J. Richard Gott has given an argument that, if good, allows one to make accurate predictions for the future longevity of a process, based solely on its present age. We show that there are problems with some of the details of Gott' s argument, but we defend the crucial insight: in many circumstances, the greater the present age of a process, the more likely a longer future duration.

Keywords:	Copernican principle, delta t arugment, doomsday argument, Jeffreys prior, scale invariance, location invariance, Elliott Sober, Nick Bostrom, Ken Olum, Carleton Caves
Subjects:	Specific Sciences: Probability/Statistics General Issues: Decision Theory
ID Code:	2279
Deposited By:	Monton, Bradley
Deposited On:	27 April 2005
Additional Information:	This is the penultimate version of a paper forthcoming in _Philosophical Quarterly Please do not cite this version.

Send feedback to: philsci-archive@library.pitt.edu