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STRUCTURE OF COMPLETELY REDUCIBLE
GROUPS AND RINGS

By MenGg-Hur Liv
Peking University

Let C be a group with an operator domain. All subgroups in con-
sideration will be admissible and normal. G is said to be a completely
reducible group (we shall use the abbreviation C. R. group) if to every
subgroup IV of G, there is another subgroup N’ of G, such that G is the
direct product of N and N'. Assuming one of the chain conditions,
Jacobson [1] has proved that a C. R. group is a direct product of a finite
number of irreducihle subgroups. In this paper, we shall investigate the
structure of a C. R. group without using either of the chain conditions
and we have established the fact that a C. R. group is always a direct
product of a finite number or an infinite number of irreducible subgroups.
By this, we have also obtained a generalization of Wedderburn-Artin’s
theory of rings without mirimal condition.

Here / must express my best thanks to Professers H. J. Chang
(H|ARFHG) and S. Wang (F#i#s) and Mr. L. C. Nieh (FHEW). Itis due
to their constant encouragement and invaluable suggestions that 7 com-
plete this work.

Part I. Structure of a C. R. Group
First, we shall give some definitions and some known results about
C. R. groups. When homomorphisms or isomorphisms are spoken of we
shall always mean © —homomorphisms or £ — isomorphisms.
Def 1. G is said to be a C. R. group, if to every subgroup N of G,
there 1s another subgroup N' of G, such that G is the direct product of N
and N'.
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Def 2. J is said to be an irreducible subgroup, if I has no
subgroups other than e, the identity subgroup, and itself. '

Def. 3. G is said to be a direct product of a system of (dénumerﬁbly
or non-denumerably many) irreducible subgroups I, I,,---, if any
element a of G can be uniguely expressed as a=a,, a,--+a, where a,,
belongs to [, ’ ' C

We denote by N=(a,, a,,- - -a,) the smallest subgroup containing
a,, a,,- - -a, and/V is said to have a finite basis.

Known results about C. R. groups:

1). A subgroup IV of a C. R. group G is itself a C. R. group.

2). InaC. R. group G, the ascending chain condition holds if and
only if the descending chain condition holds.

5). The ascending chain condition holds in a group G, if and only
if every subgroup IV has a finite basis. '

THEOREM 1. If G isa C. R. group, different from e, then G con-
tains an irreducible subgroup <3, different from e.

Proof. Leta (5 e) be an element of G. We shall show that (a)
satisfies the ascending chain condition.

Let M, be a subgroup of (a). By hypothesis G=M, x M! (direct
product). Writing a=a, - af, where a,eM,, aje¢M], we have (a)C
(a,) - (@}), and this is a direct product, since (a,)N (al)C M, ﬂM{ze.
From a}=ar!a follows that (a}) C M, x (a) < (@). Therefore (a) C (a,) x (a})
C M, x (a})C (a). Hence (a)=(a) % (a])=M, x (a}), and then M, =(a,).

This result, together with 1), 2), 5) shows that (¢) contains irredu-
cible subgroups. This proves the theorem. '

THEOREM 2. 4 C. R. group is a direct product of irreducible
subgroups. s

Proof. Let G(s¢) be a C. R. group. By Theorem 1, thereis an
irreducible subgroup <, (5 ¢). -As G isa C. R. group, G=3, x J. By
1), X is a C. R. group; if J{ = ¢, we again have an irreducible subgroup
32, then - ' :

G=J X (Fe % Jo) = (Fh x Je) x 3z
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By transfinite induction, we arrive at the conclusion that G can be
decomposed into a direct product of irreducible subgroups.

THEOREM 3. If G is a direct product of irreducible subgroups,
then G is a C. R. group.

THEOREM 4. If two decompositions in which corresponding factors
are isomorphic are considered identical, then the decomposition of a C. R.
group G into a direct product of irreducible subgroups is unique.

THEOREM 5. If G is a product of irreducible subgroups, then G is
a C. R. group.

Proofs of Theorems 3, 4, 5 were given by Krull [ 2] for Abelian gronps.
The proofs for the general case are essentially the same.

Part II. Structure of a C. R. Ring
" Def. 4. Rissaid to be a C. R. 1. ring (completely reducible ring

Sor left ideals ), if to every left ideal | of R there ts another left ideal I'
such that R is a direct sum of | and l'.

Similarly we mnay define a C. . r. ing (completely reducible ring for
right ideals).

If Risa C. R. 1. ring as well as a C. R. /. ring, we simply call it a
C. R. ring.

Consider a C. R. /. ring R as an additive group with itself as operator
domain, we obtain immediately:

THEOREM 6. A C. R. [l ring is a direct sum of minimal left ideals.

The sum of all nilpotent left ideals, i.e., the left ideals / for which
there is a positive integer n such that /=0, form a maximal two-sided
ideal R of R [3]). R is called the radical.

THEOREM 7. If R isa C. R. 1. ring, R its radical, then R*=0.

Proof. We need only prove that if R is a C. R. /. ring, then for
every mnilpotent left ideal I, we have 12=0. In fact, if a,b,¢ R, then
asl, bel’ where 1,0’ are nilpotent, therefore a,b,el+1’. As the sum
of nilpotent left ideals is again a nilpotent left ideal, a5 =0 or R*>=0.

Now let [ be a nilpotent left ideal, and assume % g 0, then, by 1) of
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part I we have /=[*+[" (direct sum) from [V CI% [V Cl and [*=!
({*+7) we have 1I'=0 and [*=[?, this leads to the contradiction that /
would not be nilpotent.

Def. 5. R is said to be a semi-simple ring if R is a C. R. . ring
and if the radecel R=0.

Def. 6. R is said to be a simple ring if R is a C. R. l. ring and
has no two sided idgal other than zero ideal and R itself.

If R is a simple ring with R?=0 then R is an additive group of prime
order with the multiplication ab=0 for any a, b of R. In the sequel,
simple rings are understood to be non-trivial or R®#0.

THEOREM 8. A simple ring is semisimple.
Proof. As usual.

THEOREM 9. A semi-simple ring is a direct sum of simple two-sided
ideals.

Proof. Let R be a semi-simple ring. Then by Theorem 4, Ris a
direct sum of minimal left ideals. The sum of all R-isomorphic minimal
left ideals form a two sided simple ideal. |3]

Remarks

1. We may define a simple ring (in the most general sense) as a
ring without two-sided ideals other than zero-ideal and R itself. Their
structure can not be determined in general, unless certain other conditions
are imposed. One of them, due to Jacobson, is that R contains minimal
left (or right) ideals [4]. The simple ring in our sense is obviously a
simple ring in Jacobson’s sense. Convel‘se]y, let R be a simple ring in
Jacobson’s sense and / be a minimal left ideal of R.  Then the sum of all
left ideals R-isomorphic to [, form a two sided ideal (#0) of R, therefore
must coincide with R. By Theorem 5, R is a C. R. /. ring.

2. A semi-simple ring Ris a C. R. ring. This will be proved if it
is proved for simpl rings. Let R be a simple ring. Then R=0. Let!
be a mininal left ideal. As R=0, there is an idempotent element e # 0
wich belangs to [ and /= Re, then eR js minimal right ideal and R is sum
of minimal right ideals, therefore R is a C. R. r. ring: This establishes
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the fact. However, this is not true in general. For example, if we
introduce a multiplication (a,d) (¢,d)=(ac,ad) into the vector space (a, )
over the rational field, we oblain a ring, which is a C. R. 1. ring but not
a C. R. r. ring.

3. In a C. R. 1. ring it may be of some interest, to prove the
following theorem: Kvery non-nilpotent left ideal contains an idempotent
element e #£0.

Proof. Let R be a C. R. L. ring, and [ a non-nilpotent left ideal.
Then [* % 0. So, there is an element @&/ such that [u % 0. Let [/ be
the left annihilator of ¢ in /. Then [, is a left ideal properly contained
in /. By hypothesis, and /)

l=L+U

Therefore, 0 % (W=, C{. Then I=ljp+!'. We have y=eu+1.
If e=0 we have w=4". As I] % 0, there exists 0 = A& Il. From Au=24/,
Aweliu, Al g1, we have Au=AA'=<0. But then e/, or Ael, NI =0,
a contradiction. Therefore e 7 0. Since et=e*u +el’, we have (e*—¢)
w= —elA ¢l'. Similar arguments show that e*—e=0 or ¢’=e.

THEOREM 10; Let R be the radical of a C. R. L. ring R. Then

{) RR=0

i) The nen-zero left ideals of R have only the form

(@) a cyclic group (x) of prime order and Rx =0
(6) I=1'x where l' is a minimal non-nilpotent left ideal and z & R.

Proof. By hypothesis R=S+R (direct sum). As R is two-sided,
RSCR,RSCS. Hence RS=0. So, RR=R(S+R)=0.

Now if / is a non-zero minimal left ideal of R and /5% 0. Tet z
be a non-zero element of 1.

Case a) Rxr=0. Obviously, /is a cyclic group (z) of prine order,
and Rx=0.

Case b) Rz % 0. As R®=0, Rx=(S+ R)x=S8z 0 As S is a direct
sum of minimal left ideals of the formm Re, where e is an idempotent,
there exists a certain e for which ex 5 0. So, Rex={'z is a minimal left
ideal in R.
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